The Different Relationships between the ENSO Spring Persistence Barrier and Predictability Barrier

被引:14
作者
Jin, Yishuai [1 ,2 ]
Liu, Zhengyu [3 ]
Duan, Wansuo [4 ]
机构
[1] Ocean Univ China, Key Lab Phys Oceanog, Minist Educ, Qingdao, Peoples R China
[2] Pilot Natl Lab Marine Sci & Technol Qingdao, Open Studio Ocean Climate Isotope Modeling, Qingdao, Peoples R China
[3] Ohio State Univ, Dept Geog, Atmospher Sci Program, Columbus, OH USA
[4] Chinese Acad Sci, Inst Atmospher Phys, State Key Lab Numer Modeling Atmospher Sci & Geoph, Beijing, Peoples R China
关键词
ENSO; Persistence; Prediction skill; ENSO period; EL-NINO; ANNUAL CYCLE; PACIFIC; VARIABILITY; ANOMALIES; SKILL;
D O I
10.1175/JCLI-D-22-0013.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
In this paper, we investigate the relationship between the El Nino-Southern Oscillation (ENSO) spring persistence barrier (PB) and predictability barrier (PD) and apply it to explain the interdecadal modulation of ENSO prediction skill using the anomaly correlation coefficient (ACC). Previous studies showed that a longer persistence (i.e., autocorrelation) tends to produce a higher prediction skill. Using the recharge oscillator model of ENSO, both analytical and numerical solutions suggest that the predictability (i.e., ACC) is related to the persistence of sea surface temperature (SST) and cross correlation between SST and subsurface ocean heat content in the tropical Pacific. In particular, a larger damping rate in SST anomalies will lead to a lower persistence and ACC and a stronger PD. However, a shortened ENSO period, which controls the cross correlation, will lead to a lower persistence but a higher ACC associated with a weaker PD. Finally, we apply our solutions to observations and suggest that a higher ACC associated with a weaker PD after 1960 is caused by the shortened ENSO period.
引用
收藏
页码:6207 / 6218
页数:12
相关论文
共 35 条
[1]   On the joint role of subtropical atmospheric variability and equatorial subsurface heat content anomalies in initiating the onset of ENSO events [J].
Anderson, Bruce T. .
JOURNAL OF CLIMATE, 2007, 20 (08) :1593-1599
[2]   The simplest ENSO recharge oscillator [J].
Burgers, G ;
Jin, FF ;
van Oldenborgh, GJ .
GEOPHYSICAL RESEARCH LETTERS, 2005, 32 (13) :1-4
[3]   Increased variability of eastern Pacific El Nino under greenhouse warming [J].
Cai, Wenju ;
Wang, Guojian ;
Dewitte, Boris ;
Wu, Lixin ;
Santoso, Agus ;
Takahashi, Ken ;
Yang, Yun ;
Carreric, Aude ;
McPhaden, Michael J. .
NATURE, 2018, 564 (7735) :201-+
[4]   Pacific meridional mode and El Nino-southern oscillation [J].
Chang, Ping ;
Zhang, Li ;
Saravanan, R. ;
Vimont, Daniel J. ;
Chiang, John C. H. ;
Ji, Link ;
Seidel, Howard ;
Tippett, Michael K. .
GEOPHYSICAL RESEARCH LETTERS, 2007, 34 (16)
[5]   The retrospective prediction of ENSO from 1881 to 2000 by a hybrid coupled model: (II) Interdecadal and decadal variations in predictability [J].
Deng, Ziwang ;
Tang, Youmin .
CLIMATE DYNAMICS, 2009, 32 (2-3) :415-428
[6]   The initial errors that induce a significant "spring predictability barrier" for El Nino events and their implications for target observation: results from an earth system model [J].
Duan, Wansuo ;
Hu, Junya .
CLIMATE DYNAMICS, 2016, 46 (11-12) :3599-3615
[7]   Season-dependent predictability barrier for two types of El Nino revealed by an approach to data analysis for predictability [J].
Hou, Meiyi ;
Duan, Wansuo ;
Zhi, Xiefei .
CLIMATE DYNAMICS, 2019, 53 (9-10) :5561-5581
[8]   Current status of ENSO prediction skill in coupled ocean-atmosphere models [J].
Jin, Emilia K. ;
Kinter, James L., III ;
Wang, B. ;
Park, C. -K. ;
Kang, I. -S. ;
Kirtman, B. P. ;
Kug, J. -S. ;
Kumar, A. ;
Luo, J. -J. ;
Schemm, J. ;
Shukla, J. ;
Yamagata, T. .
CLIMATE DYNAMICS, 2008, 31 (06) :647-664
[9]  
Jin FF, 1997, J ATMOS SCI, V54, P811, DOI 10.1175/1520-0469(1997)054<0811:AEORPF>2.0.CO
[10]  
2