The homotopy types of G2-gauge groups

被引:15
作者
Kishimoto, Daisuke [1 ]
Theriault, Stephen [2 ]
Tsutaya, Mitsunobu [3 ]
机构
[1] Kyoto Univ, Dept Math, Kyoto 6068502, Japan
[2] Univ Southampton, Math Sci, Southampton SO17 1BJ, Hants, England
[3] Kyushu Univ, Fac Math, Fukuoka 8190395, Japan
关键词
Gauge group; Lie group; Homotopy type; SAMELSON PRODUCTS; GAUGE GROUPS; COMMUTATIVITY;
D O I
10.1016/j.topol.2017.05.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The equivalence class of a principal G(2)-bundle over S-4 is classified by the value k is an element of Z of the second Chern class. In this paper we consider the homotopy types of the corresponding gauge groups g(k), and determine the number of homotopy types up to one factor of 2. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:92 / 107
页数:16
相关论文
共 14 条
[1]   THE YANG-MILLS EQUATIONS OVER RIEMANN SURFACES [J].
ATIYAH, MF ;
BOTT, R .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1983, 308 (1505) :523-615
[2]  
Bott R., 1960, COMMENT MATH HELV, V34, P249
[3]  
COHEN FR, 1984, LECT NOTES MATH, V1051, P351
[4]   Counting homotopy types of gauge groups [J].
Crabb, MC ;
Sutherland, WA .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2000, 81 :747-768
[5]   Unstable K1-group and homotopy type of certain gauge groups [J].
Hamanaka, H ;
Kono, A .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2006, 136 :149-155
[6]   On Samelson products in p-localized unitary groups [J].
Hamanaka, Hiroaki .
TOPOLOGY AND ITS APPLICATIONS, 2007, 154 (03) :573-583
[7]   Samelson products of SO(3) and applications [J].
Kamiyama, Yasuhiko ;
Kishimoto, Daisuke ;
Kono, Akira ;
Tsukuda, Shuichi .
GLASGOW MATHEMATICAL JOURNAL, 2007, 49 :405-409
[8]   A NOTE ON THE HOMOTOPY TYPE OF CERTAIN GAUGE GROUPS [J].
KONO, A .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1991, 117 :295-297
[9]   Commutativity of the group of self-homotopy classes of Lie groups [J].
Kono, A ;
Oshima, H .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2004, 36 :37-52
[10]   EVALUATION MAP AND EHP SEQUENCES [J].
LANG, GE .
PACIFIC JOURNAL OF MATHEMATICS, 1973, 44 (01) :201-210