An extension of Zassenhaus' theorem on endomorphism rings

被引:0
作者
Dugas, Manfred [1 ]
Goebel, Rudiger
机构
[1] Baylor Univ, Dept Math, Waco, TX 76798 USA
[2] Univ Duisburg Essen, Fachbereich Math, D-45117 Essen, Germany
关键词
endomorphism rings; Zassenhaus' theorem;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a ring with identity such that R+, the additive group of R, is torsion-free. If there is some R-module M such that R subset of M subset of QR (= Q circle times(Z) R) and End(Z)(M) = R, we call R a Zassenhaus ring. Hans Zassenhaus showed in 1967 that whenever R+ is free of finite rank, then R is a Zassenhaus ring. We will show that if R+ is free of countable rank and each element of R is algebraic over Q, then R is a Zassenhaus ring. We will give an example showing that this restriction on R is needed. Moreover, we will show that a ring due to A. L. S. Corner, answering Kaplansky's test problems in the negative for torsion-free abelian groups, is a Zassenhaus ring.
引用
收藏
页码:239 / 251
页数:13
相关论文
共 16 条
  • [1] BUCKNER J, 1969, B AM MATH SOC, V75, P78
  • [2] BUCKNER J, 1983, LECT NOTES MATH, V1006, P354
  • [3] BUCKNER J, 1964, P C AB GROUPS TIH 19, P43
  • [4] BUCKNER J, 1968, J LOND MATH SOC, V43, P297
  • [5] BUCKNER J, 2007, IN PRESS ISRAEL J MA
  • [6] BUCKNER J, IN PRESS J ALGEBRA
  • [7] BUTLER MCR, 1965, P LOND MATH SOC, V15, P680
  • [8] Corner A. L. S., 1963, P LOND MATH SOC, P687
  • [9] Eklof P C., 2002, Almost Free Modules, DOI 10.1016/S0924-6509(02)80006-X
  • [10] The Kaplansky test problems for ℵ1-separable groups
    Eklof, PC
    Shelah, S
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (07) : 1901 - 1907