Novel Methods for the Global Synchronization of the Complex Dynamical Networks with Fractional-Order Chaotic Nodes

被引:0
|
作者
Zhang, Yifan [1 ]
Li, Tianzeng [2 ]
Zhang, Zhiming [1 ]
Wang, Yu [2 ]
机构
[1] Henan Univ Anim Husb & Econ, Sch Energy & Intelligence Engn, Zhengzhou 450011, Peoples R China
[2] Sichuan Univ Sci & Engn, Coll Math & Stat, Zigong 643000, Peoples R China
关键词
Lyapunov function; fractional-order; synchronization; SYSTEM; ARRAYS;
D O I
10.3390/math10111928
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The global synchronization of complex networks with fractional-order chaotic nodes is investigated via a simple Lyapunov function and the feedback controller in this paper. Firstly, the GMMP method is proposed to obtain the numerical solution of the fractional-order nonlinear equation based on the relation of the fractional derivatives. Then, the new feedback controllers are proposed to achieve synchronization between the complex networks with the fractional-order chaotic nodes based on feedback control. We propose some new sufficient synchronous criteria based on the Lyapunov stability and a simple Lyapunov function. By the numerical simulations of the complex networks, we find that these synchronous criteria can apply to the arbitrary complex dynamical networks with arbitrary fractional-order chaotic nodes. Numerical simulations of synchronization between two complex dynamical networks with the fractional-order chaotic nodes are given by the GMMP method and the Newton method, and the results of numerical simulation demonstrate that the proposed method is universal and effective.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] Coupling Design for Synchronization of Fractional-order Dynamical Networks
    Wang Junwei
    Zhang Yanbin
    Zeng Li
    PROCEEDINGS OF THE 29TH CHINESE CONTROL CONFERENCE, 2010, : 434 - 438
  • [22] Adaptive pinning synchronization in fractional-order uncertain complex dynamical networks with delay
    Liang, Song
    Wu, Ranchao
    Chen, Liping
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2016, 444 : 49 - 62
  • [23] Exponential quasi-synchronization of conformable fractional-order complex dynamical networks
    Chu, Xiaoyan
    Xu, Liguang
    Hu, Hongxiao
    CHAOS SOLITONS & FRACTALS, 2020, 140
  • [24] Quasi-synchronization analysis for fractional-order delayed complex dynamical networks
    Xu, Liguang
    Chu, Xiaoyan
    Hu, Hongxiao
    Mathematics and Computers in Simulation, 2021, 185 : 594 - 613
  • [25] Adaptive synchronization of fractional-order general complex dynamical networks with coupling delay
    Guo, Xiaoyong
    Guo, Nian
    Zhu, Saiyue
    Hu, Po
    PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017), 2017, : 11357 - 11361
  • [26] Synchronization of fractional order complex dynamical networks
    Wang, Yu
    Li, Tianzeng
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2015, 428 : 1 - 12
  • [27] Synchronization of fractional-order linear complex networks
    Wang, Junwei
    Zeng, Caibin
    ISA TRANSACTIONS, 2015, 55 : 129 - 134
  • [28] Complex Modified Projective Synchronization for Fractional-order Chaotic Complex Systems
    Cui-Mei Jiang
    Shu-Tang Liu
    Fang-Fang Zhang
    International Journal of Automation and Computing, 2018, 15 (05) : 603 - 615
  • [29] Complex Modified Projective Synchronization for Fractional-order Chaotic Complex Systems
    Jiang C.-M.
    Liu S.-T.
    Zhang F.-F.
    International Journal of Automation and Computing, 2018, 15 (05) : 603 - 615
  • [30] Generalized Combination Complex Synchronization for Fractional-Order Chaotic Complex Systems
    Jiang, Cuimei
    Liu, Shutang
    Wang, Da
    ENTROPY, 2015, 17 (08): : 5199 - 5217