Local and global strong solutions for SQG in bounded domains

被引:30
作者
Constantin, Peter [1 ]
Huy Quang Nguyen [2 ]
机构
[1] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
[2] Princeton Univ, Program Appl & Computat Math, Princeton, NJ 08544 USA
基金
美国国家科学基金会;
关键词
SQG; Local well-posedness; Global strong solutions; Bounded domains; EQUATIONS;
D O I
10.1016/j.physd.2017.08.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove local well-posedness for the inviscid surface quasigeostrophic (SQG) equation in bounded domains of R-2. When fractional Dirichlet Laplacian dissipation is added, global existence of strong solutions is obtained for small data for critical and supercritical cases. Global existence of strong solutions with arbitrary data is obtained in the subcritical cases. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:195 / 203
页数:9
相关论文
共 22 条
[21]  
Nguyen H.Q., 2017, ARXIV170401462
[22]   Bounds of Riesz transforms on LP spaces for second order elliptic operators [J].
Shen, ZW .
ANNALES DE L INSTITUT FOURIER, 2005, 55 (01) :173-+