Local and global strong solutions for SQG in bounded domains

被引:30
作者
Constantin, Peter [1 ]
Huy Quang Nguyen [2 ]
机构
[1] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
[2] Princeton Univ, Program Appl & Computat Math, Princeton, NJ 08544 USA
基金
美国国家科学基金会;
关键词
SQG; Local well-posedness; Global strong solutions; Bounded domains; EQUATIONS;
D O I
10.1016/j.physd.2017.08.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove local well-posedness for the inviscid surface quasigeostrophic (SQG) equation in bounded domains of R-2. When fractional Dirichlet Laplacian dissipation is added, global existence of strong solutions is obtained for small data for critical and supercritical cases. Global existence of strong solutions with arbitrary data is obtained in the subcritical cases. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:195 / 203
页数:9
相关论文
共 22 条
[1]  
[Anonymous], 1995, DYNAMICAL PROBLEMS N
[2]  
Bahouri H, 2011, GRUNDLEHR MATH WISS, V343, P1, DOI 10.1007/978-3-642-16830-7_1
[3]  
Boyer F., 2006, ELEMENTS ANAL STUDY
[4]   Positive solutions of nonlinear problems involving the square root of the Laplacian [J].
Cabre, Xavier ;
Tan, Jinggang .
ADVANCES IN MATHEMATICS, 2010, 224 (05) :2052-2093
[5]  
Caffarelli LA, 2010, ANN MATH, V171, P1903
[6]   Remarks on a Liouville-Type Theorem for Beltrami Flows [J].
Chae, Dongho ;
Constantin, Peter .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (20) :10012-10016
[7]   FORMATION OF STRONG FRONTS IN THE 2-D QUASI-GEOSTROPHIC THERMAL ACTIVE SCALAR [J].
CONSTANTIN, P ;
MAJDA, AJ ;
TABAK, E .
NONLINEARITY, 1994, 7 (06) :1495-1533
[8]   On the critical dissipative quasi-geostrophic equation [J].
Constantin, P ;
Cordoba, D ;
Wu, JH .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2001, 50 :97-107
[9]   Behavior of solutions of 2D quasi-geostrophic equations [J].
Constantin, P ;
Wu, JH .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1999, 30 (05) :937-948
[10]   Critical SQG in Bounded Domains [J].
Constantin P. ;
Ignatova M. .
Annals of PDE, 2 (2)