The interactions of localized coherent structures for a (2+1)-dimensional system

被引:24
作者
Lin, J [1 ]
Qian, XM
机构
[1] Shanghai Jiao Tong Univ, Dept Phys, Shanghai 200030, Peoples R China
[2] Zhejiang Normal Univ, Dept Phys, Jinhua 321004, Peoples R China
[3] Shaoxing Coll Arts & Sci, Dept Phys, Shaoxing 312000, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1016/S0375-9601(03)00727-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The general variable separated approach is successfully extended to the (2 + 1)-dimensional higher-order Broer-Kaup system. Abundant localized coherent solutions are obtained. We investigate the behaviors of the interactions for the three-compacton solutions and find the interactions may be not completely elastic for some types of them and completely elastic for some others. There are no phase shifts no matter the interaction is elastic or not. (C) 2003 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:93 / 100
页数:8
相关论文
共 45 条
[1]  
[Anonymous], 1986, APPL LIE GROUP DIFFE, DOI DOI 10.1007/978-1-4684-0274-2
[2]  
CAO CW, 1990, SCI CHINA SER A, V33, P528
[3]   Nonlinear atom optics and bright-gap-soliton generation in finite optical lattices [J].
Carusotto, I ;
Embriaco, D ;
La Rocca, GC .
PHYSICAL REVIEW A, 2002, 65 (05) :536111-5361110
[4]   Solutions of a (2+1)-dimensional dispersive long wave equation [J].
Chen, CL ;
Tang, XY ;
Lou, SY .
PHYSICAL REVIEW E, 2002, 66 (03) :1-036605
[5]   Soliton excitations and periodic waves without dispersion relation in shallow water system [J].
Chen, CL ;
Lou, SY .
CHAOS SOLITONS & FRACTALS, 2003, 16 (01) :27-35
[6]   THE CONSTRAINT OF THE KADOMTSEV-PETVIASHVILI EQUATION AND ITS SPECIAL SOLUTIONS [J].
CHENG, Y ;
LI, YS .
PHYSICS LETTERS A, 1991, 157 (01) :22-26
[7]   NEW SIMILARITY REDUCTIONS OF THE BOUSSINESQ EQUATION [J].
CLARKSON, PA ;
KRUSKAL, MD .
JOURNAL OF MATHEMATICAL PHYSICS, 1989, 30 (10) :2201-2213
[8]   Explosion of soliton in a multicomponent plasma [J].
Das, GC ;
Sarma, J ;
Uberoi, C .
PHYSICS OF PLASMAS, 1997, 4 (06) :2095-2100
[9]   Gauge symmetry in background charge conformal field theory [J].
Dolan, L .
NUCLEAR PHYSICS B, 1997, 489 (1-2) :245-263
[10]   METHOD FOR SOLVING KORTEWEG-DEVRIES EQUATION [J].
GARDNER, CS ;
GREENE, JM ;
KRUSKAL, MD ;
MIURA, RM .
PHYSICAL REVIEW LETTERS, 1967, 19 (19) :1095-&