Insulin-like growth factor-1 (IGF-1) inversely regulates atrophy-induced genes via the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway

被引:392
作者
Latres, E [1 ]
Amini, AR [1 ]
Amini, AA [1 ]
Griffiths, J [1 ]
Martin, FJ [1 ]
Wei, Y [1 ]
Lin, HC [1 ]
Yancopoulos, GD [1 ]
Glass, DJ [1 ]
机构
[1] Regeneron Pharmaceut Inc, Tarrytown, NY 10591 USA
关键词
D O I
10.1074/jbc.M407517200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Skeletal muscle size is regulated by anabolic (hypertrophic) and catabolic (atrophic) processes. We first characterized molecular markers of both hypertrophy and atrophy and identified a small subset of genes that are inversely regulated in these two settings (e.g. up-regulated by an inducer of hypertrophy, insulin-like growth factor-1 (IGF-1), and down-regulated by a mediator of atrophy, dexamethasone). The genes identified as being inversely regulated by atrophy, as opposed to hypertrophy, include the E3 ubiquitin ligase MAFbx (also known as atrogin-1). We next sought to investigate the mechanism by which IGF-1 inversely regulates these markers, and found that the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway, which we had previously characterized as being critical for hypertrophy, is also required to be active in order for IGF-1-mediated transcriptional changes to occur. We had recently demonstrated that the IGF1/PI3K/Akt pathway can block dexamethasone-induced up-regulation of the atrophy-induced ubiquitin ligases MuRF1 and MAFbx by blocking nuclear translocation of a FOXO transcription factor. In the current study we demonstrate that an additional step of IGF1 transcriptional regulation occurs downstream of mTOR, which is independent of FOXO. Thus both the Akt/FOXO and the Akt/mTOR pathways are required for the transcriptional changes induced by IGF-1.
引用
收藏
页码:2737 / 2744
页数:8
相关论文
共 45 条
  • [11] Growth hormone and the insulin-like growth factor system in myogenesis
    Florini, JR
    Ewton, DZ
    Coolican, SA
    [J]. ENDOCRINE REVIEWS, 1996, 17 (05) : 481 - 517
  • [12] Regulation of 4E-BP1 phosphorylation: a novel two-step mechanism
    Gingras, AC
    Gygi, SP
    Raught, B
    Polakiewicz, RD
    Abraham, RT
    Hoekstra, MF
    Aebersold, R
    Sonenberg, N
    [J]. GENES & DEVELOPMENT, 1999, 13 (11) : 1422 - 1437
  • [13] 4E-BP1, a repressor of mRNA translation, is phosphorylated and inactivated by the Akt(PKB) signaling pathway
    Gingras, AC
    Kennedy, SG
    O'Leary, MA
    Sonenberg, N
    Hay, N
    [J]. GENES & DEVELOPMENT, 1998, 12 (04) : 502 - 513
  • [14] Signalling pathways that mediate skeletal muscle hypertrophy and atrophy
    Glass, DJ
    [J]. NATURE CELL BIOLOGY, 2003, 5 (02) : 87 - 90
  • [15] Molecular mechanisms modulating muscle mass
    Glass, DJ
    [J]. TRENDS IN MOLECULAR MEDICINE, 2003, 9 (08) : 344 - 350
  • [16] PROTEIN-TURNOVER MEASURED INVIVO AND INVITRO IN MUSCLES UNDERGOING COMPENSATORY GROWTH AND SUBSEQUENT DENERVATION ATROPHY
    GOLDSPINK, DF
    GARLICK, PJ
    MCNURLAN, MA
    [J]. BIOCHEMICAL JOURNAL, 1983, 210 (01) : 89 - 98
  • [17] Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy
    Gomes, MD
    Lecker, SH
    Jagoe, RT
    Navon, A
    Goldberg, AL
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (25) : 14440 - 14445
  • [18] Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism
    Hara, K
    Yonezawa, K
    Weng, QP
    Kozlowski, MT
    Belham, C
    Avruch, J
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (23) : 14484 - 14494
  • [19] Hasselgren P O, 1999, Curr Opin Clin Nutr Metab Care, V2, P201, DOI 10.1097/00075197-199905000-00002
  • [20] EFFECTS OF DEXAMETHASONE ON PROTEIN-DEGRADATION AND PROTEASE GENE-EXPRESSION IN RAT L8 MYOTUBE CULTURES
    HONG, DH
    FORSBERG, NE
    [J]. MOLECULAR AND CELLULAR ENDOCRINOLOGY, 1995, 108 (1-2) : 199 - 209