Probability Representation of Quantum Observables and Quantum States

被引:35
作者
Chernega, Vladimir N. [1 ]
Man'ko, Olga V. [1 ,2 ]
Man'ko, Vladimir I. [1 ,3 ]
机构
[1] Russian Acad Sci, Lebedev Phys Inst, Leninskii Prospect 53, Moscow 119991, Russia
[2] Bauman Moscow State Tech Univ, 2nd Baumanskaya Str 5, Moscow 105005, Russia
[3] State Univ, Moscow Inst Phys & Technol, Inst Skii Per 9, Dolgoprudnyi 141700, Moscow Region, Russia
基金
俄罗斯科学基金会;
关键词
quantum suprematism; probability representation; quantum observables; qubit states; Heisenberg evolution equation; STAR PRODUCTS; SPIN; TOMOGRAPHY; TERMS;
D O I
10.1007/s10946-017-9648-2
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We introduce the probability distributions describing quantum observables in conventional quantum mechanics and clarify their relations to the tomographic probability distributions describing quantum states. We derive the evolution equation for quantum observables (Heisenberg equation) in the probability representation and give examples of the spin-1/2 (qubit) states and the spin observables. We present quantum channels for qubits in the probability representation.
引用
收藏
页码:324 / 333
页数:10
相关论文
共 50 条
[31]   The probability representation as a new formulation of quantum mechanics [J].
Man'ko, Margarita A. ;
Man'ko, Vladimir I. .
SYMMETRIES IN SCIENCE XV, 2012, 380
[32]   Even and Odd Cat States of Two and Three Qubits in the Probability Representation of Quantum Mechanics [J].
Mechler, Matyas ;
Man'ko, Margarita A. ;
Man'ko, Vladimir I. ;
Adam, Peter .
ENTROPY, 2024, 26 (06)
[33]   Quantum correlations and tomographic representation [J].
Man'ko, O. V. ;
Chernega, V. N. .
JETP LETTERS, 2013, 97 (09) :557-563
[34]   STATIONARY PERTURBATION THEORY IN THE PROBABILITY REPRESENTATION OF QUANTUM MECHANICS [J].
Bazrafkan, M. R. ;
Nahvifard, E. .
JOURNAL OF RUSSIAN LASER RESEARCH, 2009, 30 (04) :392-403
[35]   Hermite Polynomial Representation of Qubit States in Quantum Suprematism Picture [J].
Man'ko, Margarita A. ;
Man'ko, Vladimir, I .
CLASSICAL AND QUANTUM PHYSICS: 60 YEARS ALBERTO IBORT FEST GEOMETRY, DYNAMICS, AND CONTROL, 2019, 229 :289-303
[36]   Independent quantum systems and the associativity of the product of quantum observables [J].
Fredenhagen, Klaus .
ZAGADNIENIA FILOZOFICZNE W NAUCE-PHILOSOPHICAL PROBLEMS IN SCIENCE, 2019, (66) :61-72
[37]   Quantum Equilibrium and the Role of Operators as Observables in Quantum Theory [J].
Detlef Dürr ;
Sheldon Goldstein ;
Nino Zanghì .
Journal of Statistical Physics, 2004, 116 :959-1055
[38]   BISTOCHASTIC MATRICES AND STATISTICAL CHARACTERISTICS OF QUANTUM OBSERVABLES [J].
Chernega, Vladimir N. ;
Man'ko, Vladimir I. .
JOURNAL OF RUSSIAN LASER RESEARCH, 2009, 30 (04) :359-367
[39]   Quantum equilibrium and the role of operators as observables in quantum theory [J].
Dürr, D ;
Goldstein, S ;
Zanghi, N .
JOURNAL OF STATISTICAL PHYSICS, 2004, 116 (1-4) :959-1055
[40]   A Charged Particle in an Electric Field in the Probability Representation of Quantum Mechanics [J].
V. I. Man'ko ;
E. V. Shchukin .
Journal of Russian Laser Research, 2001, 22 :545-560