Root locus of fractional linear systems

被引:23
作者
Tenreiro Machado, J. A. [1 ]
机构
[1] Inst Engn Porto, Dept Elect Engn, P-4200072 Oporto, Portugal
关键词
Root locus; Fractional calculus;
D O I
10.1016/j.cnsns.2011.01.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper an algorithm for the calculation of the root locus of fractional linear systems is presented. The proposed algorithm takes advantage of present day computational resources and processes directly the characteristic equation, avoiding the limitations revealed by standard methods. The results demonstrate the good performance for different types of expressions. (C) 2011 Elsevier By. All rights reserved.
引用
收藏
页码:3855 / 3862
页数:8
相关论文
共 27 条
[21]  
Podlubny I, 1997, IEEE DECIS CONTR P, P4985, DOI 10.1109/CDC.1997.649841
[22]   Fractional-order systems and PI-λ-D-μ-controllers [J].
Podlubny, I .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1999, 44 (01) :208-214
[23]  
Rudolf H, 2000, APPL FRACTIONAL CALC
[24]  
Sabatier J, 2007, Advances in fractional calculus: theoretical developments and applications in physics and engineering
[25]  
Samko A. A., 1993, Fractional Integrals andDerivatives: Theory and Applications
[26]   Approximating fractional derivatives through the generalized mean [J].
Tenreiro Machado, J. A. ;
Galhano, Alexandra M. ;
Oliveira, Anabela M. ;
Tar, Jozsef K. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (11) :3723-3730
[27]   Design of fractional order digital FIR differentiators [J].
Tseng, CC .
IEEE SIGNAL PROCESSING LETTERS, 2001, 8 (03) :77-79