Root locus of fractional linear systems

被引:23
作者
Tenreiro Machado, J. A. [1 ]
机构
[1] Inst Engn Porto, Dept Elect Engn, P-4200072 Oporto, Portugal
关键词
Root locus; Fractional calculus;
D O I
10.1016/j.cnsns.2011.01.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper an algorithm for the calculation of the root locus of fractional linear systems is presented. The proposed algorithm takes advantage of present day computational resources and processes directly the characteristic equation, avoiding the limitations revealed by standard methods. The results demonstrate the good performance for different types of expressions. (C) 2011 Elsevier By. All rights reserved.
引用
收藏
页码:3855 / 3862
页数:8
相关论文
共 27 条
[1]   NOVEL DIGITAL INTEGRATOR AND DIFFERENTIATOR [J].
ALALAOUI, MA .
ELECTRONICS LETTERS, 1993, 29 (04) :376-378
[2]  
[Anonymous], 1998, ESAIM P SYSTEMES DIF
[3]  
[Anonymous], INTRO FRACTIONAL DER
[4]  
[Anonymous], 1993, INTRO FRACTIONAL CA
[5]   FRACTIONAL CALCULUS - A DIFFERENT APPROACH TO THE ANALYSIS OF VISCOELASTICALLY DAMPED STRUCTURES [J].
BAGLEY, RL ;
TORVIK, PJ .
AIAA JOURNAL, 1983, 21 (05) :741-748
[6]  
Buslowicz M, 2008, B POL ACAD SCI-TECH, V56, P319
[7]  
Chen YQ, 2002, IEEE T CIRCUITS-I, V49, P363, DOI 10.1109/81.989172
[8]  
Evans W.R., 1948, American Institute of Electrical Engineers, Transactions of the, V67, P547, DOI DOI 10.1109/T-AIEE.1948.5059708
[9]  
Evans W.R., 1950, Transactions of the American Institute of Electrical Engineers, V69, P66, DOI [10.1109/T-AIEE.1950.5060121, DOI 10.1109/T-AIEE.1950.5060121]
[10]   Complementary root locus revisited [J].
Eydgahi, AM ;
Ghavamzadeh, M .
IEEE TRANSACTIONS ON EDUCATION, 2001, 44 (02) :137-143