CERTAIN ADDITIVE DECOMPOSITIONS IN A NONCOMMUTATIVE RING

被引:0
作者
Chen, Huanyin [1 ]
Sheibani, Marjan [2 ]
Bahmani, Rahman [3 ]
机构
[1] Hangzhou Normal Univ, Sch Math, 2318 Yuhangtang Rd, Hangzhou 311121, Peoples R China
[2] Semnan Univ, Farzanegan Campus,17 Shahrivar Blvd, Semnan, Iran
[3] Semnan Univ, Fac Math Stat & Comp Sci, POB 35195-363, Semnan, Iran
关键词
idempotent matrix; nilpotent matrix; projective-free ring; quadratic equation; power series; CLEAN MATRICES; ELEMENTS; SUM;
D O I
10.21136/CMJ.2022.0039-22
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We determine when an element in a noncommutative ring is the sum of an idempotent and a radical element that commute. We prove that a 2 x 2 matrix A over a projective-free ring R is strongly J-clean if and only if A is an element of J(M-2(R)), or I-2 - A is an element of J(M-2(R)), or A is similar to [GRAPHICS] , where lambda is an element of J(R), mu is an element of 1 + J(R), and the equation x(2) - x mu - lambda = 0 has a root in J(R) and a root in 1 + J(R). We further prove that f(x) is an element of R[[x]] is strongly J-clean if f(0) is an element of R be optimally J-clean.
引用
收藏
页码:1217 / 1226
页数:10
相关论文
共 12 条
[1]   Commutative rings whose elements are a sum of a unit and idempotent [J].
Anderson, DD ;
Camillo, VP .
COMMUNICATIONS IN ALGEBRA, 2002, 30 (07) :3327-3336
[2]  
Ashrafi N, 2013, P ROMANIAN ACAD A, V14, P9
[3]  
Chen H., 2011, RINGS RELATED STABLE, DOI [10.1142/8006, DOI 10.1142/8006]
[4]   STRONGLY J-CLEAN MATRICES OVER LOCAL RINGS [J].
Chen, Huanyin .
COMMUNICATIONS IN ALGEBRA, 2012, 40 (04) :1352-1362
[5]   Commutative weakly nil clean unital rings [J].
Danchev, Peter V. ;
McGovern, W. Wm .
JOURNAL OF ALGEBRA, 2015, 425 :410-422
[6]   Strongly clean matrices over arbitrary rings [J].
Diesl, Alexander J. ;
Dorsey, Thomas J. .
JOURNAL OF ALGEBRA, 2014, 399 :854-869
[7]  
Dorsey T.J., 2006, Cleanness and strong cleanness of rings of matrices
[8]   A NOTE ON STRONGLY CLEAN MATRIX RINGS [J].
Fan, Lingling ;
Yang, Xiande .
COMMUNICATIONS IN ALGEBRA, 2010, 38 (03) :799-806
[9]   Rings whose Elements are the Sum of a Tripotent and an Element from the Jacobson Radical [J].
Kosan, M. Tamer ;
Yildirim, Tulay ;
Zhou, Y. .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2019, 62 (04) :810-821
[10]  
Shifflet, 2011, OPTIMALLY CLEAN RING