Quantum interference in 2D atomic-scale structures

被引:13
|
作者
Crommie, MF
Lutz, CP
Eigler, DM
Heller, EJ
机构
[1] IBM CORP, ALMADEN RES CTR, DIV RES, SAN JOSE, CA 95120 USA
[2] HARVARD UNIV, DEPT PHYS, CAMBRIDGE, MA 02138 USA
[3] HARVARD UNIV, HARVARD SMITHSONIAN OBSERV, CAMBRIDGE, MA 02138 USA
关键词
adatoms; atom-solid interactions; copper; iron; quantum effects; scanning tunneling microscopy; scanning tunneling spectroscopies; surface electronic phenomena;
D O I
10.1016/0039-6028(96)00552-3
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Electrons occupying surface states on the close-packed faces of the noble metals form a two-dimensional (2D) electron gas that is accessible to the scanning tunneling microscope (STM), Using a cryogenic STM, we have observed quantum mechanical interference patterns arising from 2D electrons on the surface of Cu. These interference patterns can be artificially controlled by arranging individual Fe atoms into ''quantum corrals'' on the Cu surface, Quantum corrals behave qualitatively like 2D hard-wall boxes, but a quantitative understanding is obtained within a multiple scattering formalism. The scattering here is characterized by a complex phase shift which can be extracted from the electronic density pattern near a quantum corral.
引用
收藏
页码:864 / 869
页数:6
相关论文
共 50 条
  • [31] Indentation-formed nanocontacts: an atomic-scale perspective
    Paul, William
    Oliver, David
    Gruetter, Peter
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (18) : 8201 - 8222
  • [32] Technetium Incorporation into Goethite (α-FeOOH): An Atomic-Scale Investigation
    Smith, Frances N.
    Taylor, Christopher D.
    Um, Wooyong
    Kruger, Albert A.
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2015, 49 (22) : 13699 - 13707
  • [33] Correlating STM contrast and atomic-scale structure by chemical modification: Vacancy dislocation loops on FeO/Pt(111)
    Merte, L. R.
    Knudsen, J.
    Grabow, L. C.
    Vang, R. T.
    Laegsgaard, E.
    Mavrikakis, M.
    Besenbacher, F.
    SURFACE SCIENCE, 2009, 603 (02) : L15 - L18
  • [34] Surface Nanostructure Formation and Atomic-Scale Templates for Nanodevices
    Cui, Xiaoyang
    Troadec, Cedric
    Wee, Andrew T. S.
    Huang, Yu Li
    ACS OMEGA, 2018, 3 (03): : 3285 - 3293
  • [35] Atomic-scale observation and control of the reaction of phosphine with silicon
    Schofield, S. R.
    Curson, N. J.
    Simmons, M. Y.
    Warschkow, O.
    Marks, N. A.
    Wilson, H. F.
    McKenzie, D. R.
    Smith, P. V.
    Radny, M. W.
    E-JOURNAL OF SURFACE SCIENCE AND NANOTECHNOLOGY, 2006, 4 : 609 - 613
  • [36] Atomic-scale defects and electronic properties of a transferred synthesized MoS2 monolayer
    Marion, Ida Delac
    Capeta, Davor
    Pielic, Borna
    Faraguna, Fabio
    Gallardo, Aurelio
    Pou, Pablo
    Biel, Blanca
    Vujicic, Natasa
    Kralj, Marko
    NANOTECHNOLOGY, 2018, 29 (30) : 305703
  • [37] An Atomic-Scale Study of TiO2(110) Surfaces Exposed to Humid Environments
    Sasahara, Akira
    Tomitori, Masahiko
    JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (38) : 21427 - 21435
  • [38] Morphology and atomic-scale structure of single-layer WS2 nanoclusters
    Fuchtbauer, Henrik G.
    Tuxen, Anders K.
    Moses, Poul G.
    Topsoe, Henrik
    Besenbacher, Flemming
    Lauritsen, Jeppe V.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (38) : 15971 - 15980
  • [39] The Effects of Atomic-Scale Strain Relaxation on the Electronic Properties of Monolayer MoS2
    Trainer, Daniel J.
    Zhang, Yuan
    Bobba, Fabrizio
    Xi, Xiaoxing
    Hla, Saw-Wai
    Iavarone, Maria
    ACS NANO, 2019, 13 (07) : 8284 - 8291
  • [40] Atomic-scale simulations of the interaction between a moving dislocation and a bcc/fcc phase boundary
    Lasko, G
    Saraev, D
    Schmauder, S
    Kizler, P
    COMPUTATIONAL MATERIALS SCIENCE, 2005, 32 (3-4) : 418 - 425