JORDAN GROUPS AND ALGEBRAIC SURFACES

被引:13
作者
Bandman, Tatiana [1 ]
Zarhin, Yuri G. [2 ,3 ]
机构
[1] Bar Ilan Univ, Dept Math, IL-5290002 Ramat Gan, Israel
[2] Penn State Univ, Dept Math, University Pk, PA 16802 USA
[3] Weizmann Inst Sci, Dept Math, IL-7610001 Rehovot, Israel
关键词
Elliptic Curve; Irreducible Component; Algebraic Variety; Algebraic Surface; General Linear Group;
D O I
10.1007/s00031-014-9293-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that an analogue of Jordan's theorem on finite subgroups of general linear groups holds for the groups of biregular automorphisms of algebraic surfaces. This gives a positive answer to a question of Vladimir L. Popov.
引用
收藏
页码:327 / 334
页数:8
相关论文
共 16 条
[1]  
[Anonymous], 1990, Ergebn. Math. Grenzg.
[2]  
Curtis C., 1962, Representation theory of finite groups and associative algebras
[3]  
Fujita T., 1982, J FS U TOKYO 1A, V29, P503
[4]  
Iitaka S., 1982, GRADUATE TEXTS MATH, V76
[5]  
Iskovskikh V. A., 1996, Encyclopaedia Math. Sci., V35, P127
[6]  
Miyanishi M., 2001, CRM MONOGRAPH SERIES, V12, DOI [10.1090/crmm/012, DOI 10.1090/CRMM/012]
[7]  
Mumford D, 1999, LECT NOTES MATH
[8]  
Popov V. L., 2014, Springer Proc. Math. Stat., V79, P185, DOI 10.1007/978-3-319-05681-411.T3
[9]  
Popov VL, 2011, CRM PROC & LECT NOTE, V54, P289
[10]  
Serre JP, 2009, MOSC MATH J, V9, P193