Stationary Schrodinger equations governing electronic states of quantum dots in the presence of spin-orbit splitting

被引:8
作者
Betcke, Marta M. [1 ]
Voss, Heinrich [2 ]
机构
[1] Univ Manchester, Sch Math, Manchester, Lancs, England
[2] Hamburg Univ Technol, Inst Numer Stimulat, D-21071 Hamburg, Germany
关键词
quantum dot; nonlinear eigenvalue problem; minmax characterization; iterative projection method; electronic state; spin orbit interaction;
D O I
10.1007/s10492-007-0014-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we derive a pair of nonlinear eigenvalue problems corresponding to the one-band effective Hamiltonian accounting for the spin-orbit interaction governing the electronic states of a quantum dot. We show that the pair of nonlinear problems allows for the minmax characterization of its eigenvalues under certain conditions which are satisfied for our example of a cylindrical quantum dot and the common InAs/GaAs heterojunction. Exploiting the minmax property we devise an efficient iterative projection method simultaneously handling the pair of nonlinear problems and thereby saving about 25 % of the computation time as compared to the Nonlinear Arnoldi method applied to each of the problems separately.
引用
收藏
页码:267 / 284
页数:18
相关论文
共 22 条
  • [1] Babuska I., 1991, Finite Element Methods, V2, P641
  • [2] Bastard G., 1988, WAVE MECH APPL SEMIC
  • [3] BETCKE M, UNPUB INTERATIVE PRO
  • [4] A Jacobi-Davidson-type projection method for nonlinear eigenvalue problems
    Betcke, T
    Voss, H
    [J]. FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2004, 20 (03): : 363 - 372
  • [5] Chuang S. L., 1995, PHYS OPTOELECTRONIC
  • [6] *COMSOL INC, 2004, FEMLAB VERS 3 1
  • [7] Kane E.O., 1966, SEMICOND SEMIMET, V1, P75
  • [8] Electron energy state spin-splitting in 3D cylindrical semiconductor quantum dots
    Li, Y
    Voskoboynikov
    Lee, CP
    Sze, SM
    Tretyak, O
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2002, 28 (04) : 475 - 481
  • [9] LI Y, 2001, P 4 INT C MOD SIM MI, P562
  • [10] MOTION OF ELECTRONS AND HOLES IN PERTURBED PERIODIC FIELDS
    LUTTINGER, JM
    KOHN, W
    [J]. PHYSICAL REVIEW, 1955, 97 (04): : 869 - 883