Warming and Labile Substrate Addition Alter Enzyme Activities and Composition of Soil Organic Carbon

被引:7
作者
Tamura, Mioko [1 ]
Suseela, Vidya [1 ]
机构
[1] Clemson Univ, Dept Plant & Environm Sci, Clemson, SC 29634 USA
基金
美国食品与农业研究所;
关键词
soil organic matter; suberin; cutin; warming; labile substrates; enzyme activity; invasion; temperature sensitivity; TEMPERATURE SENSITIVITY; TERRESTRIAL ECOSYSTEMS; PLANT INVASION; MATTER; DECOMPOSITION; NITROGEN; CLIMATE; MINERALIZATION; STABILIZATION; PRECIPITATION;
D O I
10.3389/ffgc.2021.691302
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Warming can increase the efflux of carbon dioxide (CO2) from soils and can potentially feedback to climate change. In addition to warming, the input of labile carbon can enhance the microbial activity by stimulating the co-metabolism of recalcitrant soil organic matter (SOM). This is particularly true with SOM under invaded ecosystems where elevated CO2 and warming may increase the biomass of invasive species resulting in higher addition of labile substrates. We hypothesized that the input of labile carbon would instigate a greater soil organic carbon (SOC) loss with warming compared to the ambient temperature. We investigated this by incubating soils collected from a native pine (Pinus taeda) forest to which labile carbon from the invasive species kudzu (Pueraria lobata) was added. We evaluated the microbial extracellular enzyme activity, molecular composition of SOC and the temperature sensitivity of soil CO2 efflux under warming and labile carbon addition. After 14 months of soil incubation, the addition of labile C through kudzu extract increased the activity of beta-1,4-glucosidase compared with the control. However, the activity of N-acetyl-beta-D-glucosaminidase and fungal biomass (ergosterol) decreased with labile carbon addition. The activity of peroxidase increased with warming after 14 months of soil incubation. Although the carbon content of incubated soils did not vary with substrate and temperature treatments, the molecular composition of SOC indicated a general decrease in biopolymers such as cutin, suberin, long-chain fatty acids, and phytosterol with warming and an increasing trend of microbial-derived compounds with labile substrate addition. In soils that received an addition of labile C, the macro-aggregate stability was higher while the temperature sensitivity of soil C efflux was lower compared with the control. The increase in aggregate stability could enhance the physical protection of SOC from microbial decomposition potentially contributing to the observed pattern of temperature sensitivity. Our results suggest that warming could preferentially accelerate the decomposition of recalcitrant compounds while the addition of labile substrates could enhance microbial-derived compounds that are relatively resistant to further decomposition. Our study further emphasizes that global change factors such as plant invasion and climate change can differentially alter soil microbial activity and the composition of SOC.
引用
收藏
页数:11
相关论文
共 62 条
[51]   Effects of soil moisture on the temperature sensitivity of heterotrophic respiration vary seasonally in an old-field climate change experiment [J].
Suseela, Vidya ;
Conant, Richard T. ;
Wallenstein, Matthew D. ;
Dukes, Jeffrey S. .
GLOBAL CHANGE BIOLOGY, 2012, 18 (01) :336-348
[52]   Plant litter chemistry alters the content and composition of organic carbon associated with soil mineral and aggregate fractions in invaded ecosystems [J].
Tamura, Mioko ;
Suseela, Vidya ;
Simpson, Myrna ;
Powell, Brian ;
Tharayil, Nishanth .
GLOBAL CHANGE BIOLOGY, 2017, 23 (10) :4002-4018
[53]   Plant litter chemistry and microbial priming regulate the accrual, composition and stability of soil carbon in invaded ecosystems [J].
Tamura, Mioko ;
Tharayil, Nishanth .
NEW PHYTOLOGIST, 2014, 203 (01) :110-124
[54]   Phenolic inputs by invasive species could impart seasonal variations in nitrogen pools in the introduced soils: A case study with Polygonum cuspidatum [J].
Tharayil, Nishanth ;
Alpert, Peter ;
Bhowmik, Prasanta ;
Gerard, Patrick .
SOIL BIOLOGY & BIOCHEMISTRY, 2013, 57 :858-867
[55]   Both priming and temperature sensitivity of soil organic matter decomposition depend on microbial biomass - An incubation study [J].
Thiessen, Stefany ;
Gleixner, Gerd ;
Wutzler, Thomas ;
Reichstein, Markus .
SOIL BIOLOGY & BIOCHEMISTRY, 2013, 57 :739-748
[56]   Experimental warming alters potential function of the fungal community in boreal forest [J].
Treseder, Kathleen K. ;
Marusenko, Yevgeniy ;
Romero-Olivares, Adriana L. ;
Maltz, Mia R. .
GLOBAL CHANGE BIOLOGY, 2016, 22 (10) :3395-3404
[57]   Stabilization of organic matter in temperate soils:: mechanisms and their relevance under different soil conditions -: a review [J].
von Luetzow, M. ;
Koegel-Knabner, I. ;
Ekschmitt, K. ;
Matzner, E. ;
Guggenberger, G. ;
Marschner, B. ;
Flessa, H. .
EUROPEAN JOURNAL OF SOIL SCIENCE, 2006, 57 (04) :426-445
[58]   A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi [J].
Wright, SF ;
Upadhyaya, A .
PLANT AND SOIL, 1998, 198 (01) :97-107
[59]   Responses of terrestrial ecosystems to temperature and precipitation change: a meta-analysis of experimental manipulation [J].
Wu, Zhuoting ;
Dijkstra, Paul ;
Koch, George W. ;
Penuelas, Josep ;
Hungate, Bruce A. .
GLOBAL CHANGE BIOLOGY, 2011, 17 (02) :927-942
[60]   Interactive effects of temperature and precipitation on soil respiration in a temperate maritime pine forest [J].
Yuste, JC ;
Janssens, IA ;
Carrara, A ;
Meiresonne, L ;
Ceulemans, R .
TREE PHYSIOLOGY, 2003, 23 (18) :1263-1270