The new fusion algorithm in robot path planning application

被引:0
作者
Duan Ai-ling [1 ]
Duan Qiong-bo [2 ]
Deng Gao-feng [1 ]
机构
[1] Henan Univ Technol, Schoof Informat Sci & Ngineering, Zhengzhou 450000, Peoples R China
[2] Armed Police Force, Engn Coll, Xian, Peoples R China
来源
2ND IEEE INTERNATIONAL CONFERENCE ON ADVANCED COMPUTER CONTROL (ICACC 2010), VOL. 5 | 2010年
关键词
path planning; Ant Colony Optimization(ACO); Particle Swarm Optimization(PSO);
D O I
10.1109/ICACC.2010.5487090
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Robot path planning is an important research topic in robotics field. The paper proposes an algorithm based on the combination of Ant Colony Optimization(ACO) and Particle Swarm Optimization(PSO) for path planning. The new algorithm combines the advantages of ACO and PSO effectively and generates the distribution of the initial information for ACO by using the merits of high efficiency and concision of PSO, and then uses the advantages of parallelizablity, positive feedback and solution with high accuracy of ACO to get global optimum solution. The simution. result demonstrates the effectiveness and feasibility of the proposed algorithm.
引用
收藏
页码:430 / 434
页数:5
相关论文
共 9 条
[1]  
[Anonymous], 1999, Swarm Intelligence
[2]  
Dorigo M, 1999, NEW IDEAS OPTIMIZATI, P11
[3]   SOFA PROBLEM [J].
HOWDEN, WE .
COMPUTER JOURNAL, 1968, 11 (03) :299-&
[4]  
Jang Mei-Yu, 2005, COMPUTER ENG APPL, V41, P34
[5]  
Kennedy J., 1995, IEEE INT C NEUR NETW
[6]  
Li Lei, 2002, Robot, V24, P475
[7]   A modified particle swarm optimizer [J].
Shi, YH ;
Eberhart, R .
1998 IEEE INTERNATIONAL CONFERENCE ON EVOLUTIONARY COMPUTATION - PROCEEDINGS, 1998, :69-73
[8]  
SUN SD, 1998, NW POLYTECHNICAL U, V16, P79
[9]  
Zhang CG, 2001, SCI CHINA SER E, V44, P131