Enhanced Electrochemical Performance and Durability of the BaCo0.4Fe0.4Zr0.1Y0.1O3-δ Composite Cathode of Protonic Ceramic Fuel Cells via Forming Nickel Oxide Nanoparticles

被引:29
|
作者
Lee, Hyungjun [1 ]
Jung, Hoyeon [1 ]
Kim, Chanho [1 ]
Kim, Sungmin [1 ]
Jang, Inyoung [1 ]
Yoon, Heesung [1 ]
Paik, Ungyu [1 ]
Song, Taeseup [1 ]
机构
[1] Hanyang Univ, Dept Energy Engn, Seoul 133791, South Korea
关键词
protonic ceramic fuel cell; cathode material; nanoparticles; nickel oxide; surface-exchange reaction; CERATE-ZIRCONATE ELECTROLYTES; OXYGEN REDUCTION REACTION; ELECTRICAL-CONDUCTIVITY; SURFACE MODIFICATION; TEMPERATURE; FABRICATION; PEROVSKITE; ELECTROCATALYSTS; MECHANISMS; GENERATION;
D O I
10.1021/acsaem.1c02311
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In protonic ceramic fuel cells (PCFCs), oxygen reduction reaction activity is governed by the oxygen adsorption/dissociation, proton conduction, and electron transfer kinetics. Although various strategies have been explored to enhance the proton and electron conductivity via tuning the oxygen vacancy concentration in the electrode materials and introducing electronic conducting agents, there are few studies on improving oxygen adsorption/dissociation (surface-exchange reaction) kinetics in PCFCs. In this study, we report uniformly distributed thermodynamically stable nickel oxide (NiO) nanoparticles as a catalyst to enhance the electrochemical performance of the BaCo0.4Fe0.4Zr0.1Y0.1O3-delta (BCFZY) cathode, which is a promising cathode material because of its triple (oxygen ion, proton, and electron) conductivity in PCFCs, by improving surface-exchange reaction kinetics. The 0D NiO nanoparticles with high adsorption and fast dissociation ability of oxygen could enlarge the active sites for surface-exchange reactions without fading the BCFZY surface and triple-phase boundaries where the H2O formation reaction occurs. The cathode employing NiO nanoparticles exhibits largely reduced polarization resistance and a superior power density of 780 mW/cm(2) at 600 degrees C. This improvement is attributed to the enhanced surface-exchange reaction kinetics.
引用
收藏
页码:11564 / 11573
页数:10
相关论文
共 50 条
  • [21] Effects of Ceria on the Oxygen Reduction Activity and Thermal Cycling Stability of BaCo0.4Fe0.4Zr0.1Y0.1O3-d Cathode for Solid Oxide Fuel Cells
    Li, Yanpu
    Li, Yihang
    Singh, Manish
    Li, Zhengnan
    Hu, Xingliu
    Fan, Liangdong
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (11) : 14391 - 14400
  • [22] Phase stability and hydrogen permeation performance of BaCo0.4Fe0.4Zr0.1Y0.1O3-d ceramic membranes
    Zhang, Dandan
    Zhang, Xiaozhen
    Zhou, Xiaojian
    Song, Yawen
    Jiang, Yuhua
    Lin, Bin
    CERAMICS INTERNATIONAL, 2022, 48 (07) : 9946 - 9954
  • [23] Redox inactive ion meliorated BaCo0.4Fe0.4Zr0.1Y0.1O3-δ perovskite oxides as efficient electrocatalysts for the oxygen evolution reaction
    Li, Xiangnan
    Zhang, Jie
    Feng, Qi
    Pu, Chunying
    Zhang, Luozheng
    Hu, Manman
    Zhou, Xianyong
    Zhong, Xiongwei
    Yi, Wendi
    Tang, Jun
    Li, Zhiwei
    Zhao, Xingzhong
    Li, Hui
    Xu, Baomin
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (36) : 17288 - 17296
  • [24] Enhancing the Oxygen Reaction Kinetics through Compositing BaCoO3-δ with Triple Conductor BaCo0.4Fe0.4Zr0.1Y0.1O3-δ for Proton-Conducting Solid Oxide Fuel Cells
    Wang, Sijia
    Cui, Jingzeng
    Zhu, Jianqiu
    Liu, Ze
    Xia, Ziting
    Liu, Youle
    Du, Peng
    Wang, Jian-Qiang
    Zhang, Yuxuan
    Wei, Tao
    Zhang, Linjuan
    JOURNAL OF PHYSICAL CHEMISTRY C, 2024, 128 (37) : 15255 - 15265
  • [25] A triple (e-/O2-/H+) conducting perovskite BaCo0.4Fe0.4Zr0.1Y0.1O3-δ for low temperature solid oxide fuel cell
    Jhuang, Jhe-Wei
    Lee, Kan-Rong
    Lee, Sheng-Wei
    Wang, Baoyuan
    Xia, Chen
    Hung, I. Ming
    Tseng, Chung-Jen
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (15) : 9767 - 9774
  • [26] K-doped BaCo0.4Fe0.4Zr0.2O3-δ as a promising cathode material for protonic ceramic fuel cells
    Qiu, Peng
    Liu, Bo
    Wu, Lei
    Qi, Huiying
    Tu, Baofeng
    Li, Jian
    Jia, Lichao
    JOURNAL OF ADVANCED CERAMICS, 2022, 11 (12): : 1988 - 2000
  • [27] Electrochemical Performance and Enhancement of Hydration Kinetics on BaCo0.7Fe0.2Zr0.1O3-d Cathode for Protonic Ceramic Fuel Cells
    Li, Haowei
    Li, Jun
    Wang, Xiaoyu
    Xie, Caiyue
    Wang, Yifei
    Ding, Xifeng
    ACS APPLIED ENERGY MATERIALS, 2023, : 8966 - 8975
  • [28] BaZr0.1Co0.4Fe0.4Y0.1O3-SDC composite as quasi-symmetrical electrode for proton conducting solid oxide fuel cells
    Yu, Yingqin
    Yu, Lixiang
    Shao, Kang
    Li, Yihang
    Maliutina, Kristina
    Yuan, Wenxiang
    Wu, Qixing
    Fan, Liangdong
    CERAMICS INTERNATIONAL, 2020, 46 (08) : 11811 - 11818
  • [29] Boosting the Activity of BaCo0.4Fe0.4Zr0.1Y0.1O3-δ Perovskite for Oxygen Reduction Reactions at Low-to-Intermediate Temperatures through Tuning B-Site Cation Deficiency
    Kuai, Xu
    Yang, Guangming
    Chen, Yubo
    Sun, Hainan
    Dai, Jie
    Song, Yufei
    Ran, Ran
    Wang, Wei
    Zhou, Wei
    Shao, Zongping
    ADVANCED ENERGY MATERIALS, 2019, 9 (38)
  • [30] Accelerated oxygen reduction kinetics in BaCo0.4Fe0.4 Zr0.2O3-δ cathode via doping with a trace amount of tungsten for protonic ceramic fuel cells
    Yang, Jiamin
    Zhou, Caixia
    Zheng, Shuqin
    Zhang, Limin
    CERAMICS INTERNATIONAL, 2024, 50 (22) : 44935 - 44942