Discrete Schrodinger equations and dissipative dynamical systems

被引:16
作者
Abounouh, M. [1 ]
Al Moatassime, H. [1 ]
Chehab, J. P. [2 ,3 ]
Dumont, S. [4 ]
Goubet, O. [4 ]
机构
[1] Univ Cadi Ayyad, Fac Sci & Tech Gueliz, Marrakech, Morocco
[2] Univ Lille 1, Lab Math Paul Painleve, CNRS, UMR 8524, F-59655 Villeneuve Dascq, France
[3] INRIA Futurs, SIMPAF Project, Lille, France
[4] Univ Picardie Jules Verne, CNRS, LAMFA UMR 6140, Amiens, France
关键词
finite differences; stability; multilevel decomposition;
D O I
10.3934/cpaa.2008.7.211
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a Crank-Nicolson scheme to study numerically the long-time behavior of solutions to a one dimensional damped forced nonlinear Schrodinger equation. We prove the existence of a smooth global attractor for these discretized equations. We also provide some numerical evidences of this asymptotical smoothing effect.
引用
收藏
页码:211 / 227
页数:17
相关论文
共 19 条
[1]   ON THE DISCRETIZATION OF A PARTIAL-DIFFERENTIAL EQUATION IN THE NEIGHBORHOOD OF A PERIODIC ORBIT [J].
ALOUGES, F ;
DEBUSSCHE, A .
NUMERISCHE MATHEMATIK, 1993, 65 (02) :143-175
[2]   ON THE QUALITATIVE BEHAVIOR OF THE ORBITS OF A PARABOLIC PARTIAL-DIFFERENTIAL EQUATION AND ITS DISCRETIZATION IN THE NEIGHBORHOOD OF A HYPERBOLIC FIXED-POINT [J].
ALOUGES, F ;
DEBUSSCHE, A .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1991, 12 (3-4) :253-269
[3]  
[Anonymous], APPL ANAL
[4]   An explicit unconditionally stable numerical method for solving damped nonlinear Schrodinger equations with a focusing nonlinearity [J].
Bao, WZ ;
Jaksch, D .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2003, 41 (04) :1406-1426
[5]   Nonlinear hybrid procedures and fixed point iterations [J].
Brezinski, C ;
Chehab, JP .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1998, 19 (5-6) :465-487
[6]  
CUEVAS J, IN PRESS TRESHOLDS T
[7]  
GHIDAGLIA JM, 1988, ANN I H POINCARE-AN, V5, P365
[8]  
GOUBET O, 1997, DISCRETE CONT DYN S, V3, P303
[9]  
GOUBET O, IN PRESS DISSIPATIVE
[10]  
Hale J.K., 1988, MATH SURVEYS MONOGRA, V25