Fracture toughness evolution of a carbon/carbon composite after low-cycle fatigue

被引:6
作者
Stepashkin, A. A. [1 ]
Ozherelkov, D. Yu [1 ]
Sazonov, Yu B. [1 ]
Komissarov, A. A. [1 ]
机构
[1] Natl Univ Sci & Technol MISIS, Moscow 119991, Russia
关键词
Carbon/carbon composites (CCCs); Compression fatigue; Low cycle fatigue; J-Integral; CARBON-CARBON COMPOSITE; TENSILE FATIGUE; MECHANICAL-PROPERTIES; MATRIX COMPOSITES; BEHAVIOR; 2D; DAMAGE; IMPROVEMENT; FREQUENCY; STRENGTH;
D O I
10.1016/j.engfracmech.2018.12.018
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
High fracture resistance of carbon/carbon (C/C) composites as a material for aircraft braking systems is essential for their safe service. This paper presents a study on fatigue behavior and residual mechanical properties after cyclic load of discretely-reinforced C/C composite. The influence of cyclic loads on the fracture toughness of frictional C/C composite was examined. Results of fracture toughness tests after compression fatigue load were determined using the ASTM single-notch three point bend test and correlated with fracture surface using scanning electron microscopy (SEM). It is revealed that C/C composite fracture toughness strongly depends on the fiber-matrix interfacial bonding strength. Cyclic loads below fatigue limit improve residual fracture toughness of the material up to 25% by the mechanism of interfaces weakening. Cyclic loads above fatigue limit decrease residual fracture toughness of the material by the fracture of carbon fibers. Observed results may be useful in developing friction C/C composites to enhance fracture resistance in aircraft braking systems, increasing safety and operating lifetime.
引用
收藏
页码:442 / 451
页数:10
相关论文
共 50 条
  • [11] Effect of low-cycle fatigue on the hot ductility of plain carbon steel
    Seo, Sang Chul
    Kim, Hyun Jung
    Park, Byung Ho
    Son, Kwang Suk
    Lee, Sung Keun
    Kang, Sun Bae
    Kim, Donggyu
    METALS AND MATERIALS INTERNATIONAL, 2006, 12 (03) : 273 - 277
  • [12] Effects of loading rates on mode I interlaminar fracture toughness of carbon/epoxy composite toughened by carbon nanotube films
    Li, Zhouyi
    Wang, Yu
    Cao, Junchao
    Meng, Xianghao
    Aamir, Raza Muhammad
    Lu, Weibang
    Suo, Tao
    COMPOSITES PART B-ENGINEERING, 2020, 200
  • [13] The low-cycle fatigue, fracture and life prediction of compacted graphite iron: Influence of temperature
    Zou, C. L.
    Chen, L. J.
    Pang, J. C.
    Wang, M.
    Qiu, Y.
    Li, S. X.
    Zhang, Z. F.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2019, 763
  • [14] Criteria for Evaluating the Fracture Toughness of Carbon–Carbon Composite Materials
    A. A. Stepashkin
    D. Yu. Ozherelkov
    Yu. B. Sazonov
    A. A. Komissarov
    Metal Science and Heat Treatment, 2018, 60 : 266 - 272
  • [15] Influence of Microstructure on Low-Cycle and Extremely-Low-Cycle Fatigue Resistance of Low-Carbon Steels
    Noh, Kyungmin
    Shams, Seyed Amir Arsalan
    Kim, Wooyeol
    Kim, Jae Nam
    Lee, Chong Soo
    METALS AND MATERIALS INTERNATIONAL, 2021, 27 (10) : 3862 - 3874
  • [16] Fatigue life prediction of carbon steel with machined surface layer under low-cycle fatigue
    Hasunuma, Shota
    Oki, Shingo
    Motomatsu, Kazuaki
    Ogawa, Takeshi
    INTERNATIONAL JOURNAL OF FATIGUE, 2019, 123 : 255 - 267
  • [17] Fracture Kinetics and Mechanisms of Ultrafine-Grained Materials during Fatigue Tests in the Low-Cycle Fatigue Region
    Klevtsov, Gennadiy V.
    Valiev, Ruslan Z.
    Klevtsova, Natal'ya A.
    Tyurkov, Maksim N.
    Pigaleva, Irina N.
    Aksenov, Denis A.
    METALS, 2023, 13 (04)
  • [18] Strain-ageing effects on the residual low-cycle fatigue life of low-carbon steel reinforcement
    Loporcaro, Giuseppe
    Cuevas, Alberto
    Pampanin, Stefano
    Kral, Milo, V
    MATERIALS AND STRUCTURES, 2022, 55 (02)
  • [19] Computational models for the low-cycle fatigue behaviour of composite members and joints
    Bursi, O. S.
    Ferrario, F.
    PROGRESS IN CIVIL AND STRUCTURAL ENGINEERING COMPUTING, 2003, : 119 - 148
  • [20] Influence of impacts on static and low-cycle fatigue characteristics of composite specimens
    Bisagni, Chiara
    Walters, Carey
    INTERNATIONAL JOURNAL OF CRASHWORTHINESS, 2013, 18 (02) : 139 - 151