Loose Hamilton cycles in hypergraphs

被引:40
作者
Keevash, Peter [1 ]
Kuehn, Daniela [2 ]
Mycroft, Richard [1 ]
Osthus, Deryk [2 ]
机构
[1] Univ London, Sch Math Sci, London E1 4NS, England
[2] Univ Birmingham, Sch Math, Birmingham B15 2TT, W Midlands, England
基金
英国工程与自然科学研究理事会;
关键词
Hamilton cycle; Hypergraph; Hypergraph regularity; Blow-up lemma; K-UNIFORM HYPERGRAPHS; DIRAC-TYPE THEOREM; 3-UNIFORM HYPERGRAPHS; REGULAR PARTITIONS; LEMMAS;
D O I
10.1016/j.disc.2010.11.013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that any k-uniform hypergraph on n vertices with minimum degree at least n/2(k-1) + o(n) contains a loose Hamilton cycle. The proof strategy is similar to that used by Kuhn and Osthus for the 3-uniform case. Though some additional difficulties arise in the k-uniform case, our argument here is considerably simplified by applying the recent hypergraph blow-up lemma of Keevash. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:544 / 559
页数:16
相关论文
共 15 条
  • [1] [Anonymous], 1952, Proceedings of the London Mathematical Society, DOI [10.1112/plms/s3-2.1.69, DOI 10.1112/PLMS/S3-2.1.69]
  • [2] Azuma Kazuoki, 1967, Tohoku Mathematical Journal, V19, P357, DOI [10.2748/tmj/1178243286, DOI 10.2748/TMJ/1178243286]
  • [3] Bermond JC., 1976, PROB COMB THEORIE GR, V260, P39
  • [4] Hypergraph regularity and the multidimensional Szemeredi theorem
    Gowers, W. T.
    [J]. ANNALS OF MATHEMATICS, 2007, 166 (03) : 897 - 946
  • [5] Dirac-type results for loose Hamilton cycles in uniform hypergraphs
    Han, Hiep
    Schacht, Mathias
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2010, 100 (03) : 332 - 346
  • [6] Katona GY, 1999, J GRAPH THEOR, V30, P205, DOI 10.1002/(SICI)1097-0118(199903)30:3<205::AID-JGT5>3.0.CO
  • [7] 2-O
  • [8] KEEVASH P, RANDOM STRU IN PRESS
  • [9] Hamilton l-cycles in uniform hypergraphs
    Kuehn, Daniela
    Mycroft, Richard
    Osthus, Deryk
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2010, 117 (07) : 910 - 927
  • [10] Loose Hamilton cycles in 3-uniform hypergraphs of high minimum degree
    Kuhn, Daniela
    Osthus, Deryk
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2006, 96 (06) : 767 - 821