Adaptive RTRL based neurocontroller for damping subsynchronous oscillations using TCSC

被引:23
|
作者
Thampatty, K. C. Sindhu [1 ]
Nandakumar, M. P. [1 ]
Cheriyan, Elizabeth P. [1 ]
机构
[1] Natl Inst Technol Calicut, Dept Elect Engn, Calicut 673601, Kerala, India
关键词
Subsynchronous resonance (SSR); Thyristor controlled series capacitor (TCSC); Torsional oscillations; Artificial neural network (ANN); Real time recurrent learning algorithm (RTRL); Recurrent neural network (RNN); RESONANCE; DESIGN;
D O I
10.1016/j.engappai.2010.09.005
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Modern interconnected electrical power systems are complex and require perfect planning, design and operation. Hence the recent trends towards restructuring and deregulation of electric power supply has put great emphasis on the system operation and control. Flexible AC transmission system (FACTS) devices such as thyristor controlled series capacitor (TCSC) are capable of controlling power flow, improving transient stability and mitigating subsynchronous resonance (SSR). In this paper an adaptive neurocontroller is designed for controlling the firing angle of TCSC to damp subsynchronous oscillations. This control scheme is suitable for non-linear system control, where the exact linearised mathematical model of the system is not required. The proposed controller design is based on real time recurrent learning (RTRL) algorithm in which the neural network (NN) is trained in real time. This control scheme requires two sets of neural networks. The first set is a recurrent neural network (RNN) which is a fully connected dynamic neural network with all the system outputs fed back to the input through a delay. This neural network acts as a neuroidentifier to provide a dynamic model of the system to evaluate and update the weights connected to the neurons. The second set of neural network is the neurocontroller which is used to generate the required control signals to the thyristors in TCSC. This is a single layer neural network. Performance of the system with proposed neurocontroller is compared with two linearised controllers, a conventional controller and with a discrete linear quadratic Gaussian (DLQG) compensator which is an optimal controller. The linear controllers are designed based on a linearised model of the IEEE first benchmark system for SSR studies in which a modular high bandwidth (six-samples per cycle) linear time-invariant discrete model of TCSC is interfaced with the rest of the system. In the proposed controller, since the response time is highly dependent on the number of states of the system, it is often desirable to approximate the system by its reduced model. By using standard Hankels norm approximation technique, the system order is reduced from 27 to 11th order by retaining the dominant dynamic characteristics of the system. To validate the proposed controller, computer simulation using MATLAB is performed and the simulation studies show that this controller can provide simultaneous damping of swing mode as well as torsional mode oscillations, which is difficult with a conventional controller. Moreover the fast response of the system can be used for real-time applications. The performance of the controller is tested for different operating conditions. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:60 / 76
页数:17
相关论文
共 50 条
  • [1] Damping of subsynchronous resonance oscillations with TCSC and PSS and their control interaction
    Kumar, SVJ
    Ghosh, A
    Sachchidanand
    ELECTRIC POWER SYSTEMS RESEARCH, 2000, 54 (01) : 29 - 36
  • [2] RTRL Based Adaptive Neuro-Controller for Damping SSR Oscillations in SCIG Based Windfarms
    Thampatty, K. C. Sindhu
    Raj, P. C. Reghu
    TENCON 2017 - 2017 IEEE REGION 10 CONFERENCE, 2017, : 1702 - 1707
  • [3] A Comparative Study of Damping Subsynchronous Resonance Using TCSC and IMDU
    Chittora, Prakash
    Kumar, Narendra
    2012 IEEE FIFTH POWER INDIA CONFERENCE, 2012,
  • [4] Application of Linear Observer on Control of Subsynchronous Oscillations Using TCSC
    Naveh, I. Mohammad Hoseiny
    Rakhshani, Elyas
    Heidari, Reza
    2009 INTERNATIONAL CONFERENCE ON POWER ENGINEERING, ENERGY AND ELECTRICAL DRIVES, 2009, : 529 - +
  • [5] Design of a Subsynchronous Damping Controller Using a Dynamie Phasor-Based Model of TCSC
    Kotian, Shashidhara Mecha
    Shubhanga, K. N.
    2016 BIENNIAL INTERNATIONAL CONFERENCE ON POWER AND ENERGY SYSTEMS: TOWARDS SUSTAINABLE ENERGY (PESTSE), 2016,
  • [6] DAMPING OF SUBSYNCHRONOUS OSCILLATIONS USING ADAPTIVE CONTROLLERS TUNED BY ARTIFICIAL NEUTRAL NETWORKS
    HSU, YY
    JENG, LH
    IEE PROCEEDINGS-GENERATION TRANSMISSION AND DISTRIBUTION, 1995, 142 (04) : 415 - 422
  • [7] Borrow damping phenomena of TCSC to subsynchronous resonance
    Wu, Xi
    Jiang, Ping
    Dianli Xitong Baohu yu Kongzhi/Power System Protection and Control, 2010, 38 (03): : 34 - 38
  • [8] Impact of TCSC control methodologies on subsynchronous oscillations
    Pilotto, LAS
    Bianco, A
    Long, WF
    Edris, AA
    IEEE TRANSACTIONS ON POWER DELIVERY, 2003, 18 (01) : 243 - 252
  • [9] Suppression of subsynchronous resonance using robust H∞ TCSC damping controllers
    Wang, L
    Huang, CW
    IEEE POWER ENGINEERING SOCIETY - 1999 WINTER MEETING, VOLS 1 AND 2, 1999, : 610 - 615
  • [10] Adaptive RTRL Based Hybrid controller for Series connected FACTS Devices for Damping Power System Oscillations
    Thampatty, K. C. Sindhu
    Raj, P. C. Reghu
    PROCEEDINGS OF IEEE INTERNATIONAL CONFERENCE ON TECHNOLOGICAL ADVANCEMENTS IN POWER AND ENERGY, 2015, : 51 - 56