DNF - Galaxy photometric redshift by Directional Neighbourhood Fitting

被引:92
作者
De Vicente, J. [1 ]
Sanchez, E. [1 ]
Sevilla-Noarbe, I. [1 ]
机构
[1] Ctr Invest Energet Medioambientales & Tecnol CIEM, Avda Complutense 40, E-28040 Madrid, Spain
基金
美国国家科学基金会; 美国安德鲁·梅隆基金会;
关键词
methods: data analysis; surveys; galaxies: distances and redshifts; galaxies: statistics; large-scale structure of Universe; DARK ENERGY SURVEY; DATA RELEASE; SDSS; EVOLUTION; QUASARS;
D O I
10.1093/mnras/stw857
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Wide field images taken in several photometric bands allow simultaneous measurement of redshifts for thousands of galaxies. A variety of algorithms to make this measurement have appeared in the last few years, the majority of which can be classified as either template- or training-based methods. Among the latter, nearest neighbour estimators stand out as one of the most successful, in terms of both precision and the quality of error estimation. In this paper we describe the Directional Neighbourhood Fitting (DNF) algorithm based on the following: a new neighbourhood metric (Directional Neighbourhood), a photo-z estimation strategy (Neighbourhood Fitting) and a method for generating the photo-z probability distribution function. We compare DNF with other well-known empirical photometric redshift tools using different public data sets (Sloan Digital Sky Survey, VIMOS VLT Deep Survey and Photo-z Accuracy Testing). DNF achieves high-quality results with reliable error.
引用
收藏
页码:3078 / 3088
页数:11
相关论文
共 26 条
[1]   THE TENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST SPECTROSCOPIC DATA FROM THE SDSS-III APACHE POINT OBSERVATORY GALACTIC EVOLUTION EXPERIMENT [J].
Ahn, Christopher P. ;
Alexandroff, Rachael ;
Allende Prieto, Carlos ;
Anders, Friedrich ;
Anderson, Scott F. ;
Anderton, Timothy ;
Andrews, Brett H. ;
Aubourg, Eric ;
Bailey, Stephen ;
Bastien, Fabienne A. ;
Bautista, Julian E. ;
Beers, Timothy C. ;
Beifiori, Alessandra ;
Bender, Chad F. ;
Berlind, Andreas A. ;
Beutler, Florian ;
Bhardwaj, Vaishali ;
Bird, Jonathan C. ;
Bizyaev, Dmitry ;
Blake, Cullen H. ;
Blanton, Michael R. ;
Blomqvist, Michael ;
Bochanski, John J. ;
Bolton, Adam S. ;
Borde, Arnaud ;
Bovy, Jo ;
Bradley, Alaina Shelden ;
Brandt, W. N. ;
Brauer, Dorothee ;
Brinkmann, J. ;
Brownstein, Joel R. ;
Busca, Nicolas G. ;
Carithers, William ;
Carlberg, Joleen K. ;
Carnero, Aurelio R. ;
Carr, Michael A. ;
Chiappini, Cristina ;
Chojnowski, S. Drew ;
Chuang, Chia-Hsun ;
Comparat, Johan ;
Crepp, Justin R. ;
Cristiani, Stefano ;
Croft, Rupert A. C. ;
Cuesta, Antonio J. ;
Cunha, Katia ;
da Costa, Luiz N. ;
Dawson, Kyle S. ;
De Lee, Nathan ;
Dean, Janice D. R. ;
Delubac, Timothee .
ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2014, 211 (02)
[2]   AN INTRODUCTION TO KERNEL AND NEAREST-NEIGHBOR NONPARAMETRIC REGRESSION [J].
ALTMAN, NS .
AMERICAN STATISTICIAN, 1992, 46 (03) :175-185
[3]  
[Anonymous], 2013, MNRAS, DOI DOI 10.1093/MNRAS/STT574
[4]   Measuring and modelling the redshift evolution of clustering:: the Hubble Deep Field North [J].
Arnouts, S ;
Cristiani, S ;
Moscardini, L ;
Matarrese, S ;
Lucchin, F ;
Fontana, A ;
Giallongo, E .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1999, 310 (02) :540-556
[5]   Robust machine learning applied to astronomical data sets.: III.: Probabilistic photometric redshifts for galaxies and quasars in the SDSS and GALEX [J].
Ball, Nicholas M. ;
Brunner, Robert J. ;
Myers, Adam D. ;
Strand, Natalie E. ;
Alberts, Stacey L. ;
Tcheng, David .
ASTROPHYSICAL JOURNAL, 2008, 683 (01) :12-21
[6]   Bayesian photometric redshift estimation [J].
Benítez, N .
ASTROPHYSICAL JOURNAL, 2000, 536 (02) :571-583
[7]  
Bolzonella M, 2000, ASTRON ASTROPHYS, V363, P476
[8]   ANNz:: Estimating photometric redshifts using artificial neural networks [J].
Collister, AA ;
Lahav, O .
PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, 2004, 116 (818) :345-351
[9]   Slicing through multicolor space: Galaxy redshifts from broadband photometry [J].
Connolly, AJ ;
Csabai, I ;
Szalay, AS ;
Koo, DC ;
Kron, RG ;
Munn, JA .
ASTRONOMICAL JOURNAL, 1995, 110 (06) :2655-&
[10]   Multidimensional indexing tools for the virtual observatory [J].
Csabai, I. ;
Dobos, L. ;
Trencseni, M. ;
Herczegh, G. ;
Jozsa, P. ;
Purged, N. ;
Budavari, T. ;
Szalay, A. S. .
ASTRONOMISCHE NACHRICHTEN, 2007, 328 (08) :852-857