Classifying Algebras with Graded Involutions or Superinvolutions with Multiplicities of their Cocharacter Bounded by One

被引:1
作者
Martino, Fabrizio [1 ]
机构
[1] Univ Palermo, Dipartimento Matemat & Informat, Via Archirafi 34, I-90123 Palermo, Italy
关键词
Superinvolution; Cocharacters; Multiplicities; Graded involution; VARIETIES; MATRICES;
D O I
10.1007/s10468-020-09948-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be superalgebra over a field of characteristic zero and let * be either a graded involution or a superinvolution defined on A. In this paper we characterize the *-algebras whose *-cocharacter has multiplicities bounded by one, showing a set of *-polynomial identities satisfied by such algebras.
引用
收藏
页码:317 / 326
页数:10
相关论文
共 13 条
[1]  
ANANIN AZ, 1976, SIBERIAN MATH J+, V17, P549
[2]   COMPUTING THE Z2-COCHARACTER OF 3 x 3 MATRICES OF ODD DEGREE [J].
Aque, Stefania .
COMMUNICATIONS IN ALGEBRA, 2013, 41 (04) :1405-1416
[3]   A note on cocharacter sequence of Jordan upper triangular matrix algebra [J].
Centrone, Lucio ;
Martino, Fabrizio .
COMMUNICATIONS IN ALGEBRA, 2017, 45 (04) :1687-1695
[4]   Ordinary and graded cocharacter of the Jordan algebra of 2 x 2 upper triangular matrices [J].
Cirrito, Alessio ;
Martino, Fabrizio .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 451 :246-259
[5]  
Drensky V, 2000, PI ALGEBRAS GRADUATE
[6]   Cocharacters of group graded algebras and multiplicities bounded by one [J].
Giambruno, A. ;
Milies, C. Polcino ;
Valenti, A. .
LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (08) :1709-1715
[7]   Super-cocharacters, star-cocharacters and multiplicities bounded by one [J].
Giambruno, A. ;
Mishchenko, S. .
MANUSCRIPTA MATHEMATICA, 2009, 128 (04) :483-504
[8]   Standard polynomials and matrices with superinvolutions [J].
Giambruno, Antonio ;
Ioppolo, Antonio ;
Martino, Fabrizio .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 504 :272-291
[9]   Varieties of Algebras with Superinvolution of Almost Polynomial Growth [J].
Giambruno, Antonio ;
Ioppolo, Antonio ;
La Mattina, Daniela .
ALGEBRAS AND REPRESENTATION THEORY, 2016, 19 (03) :599-611
[10]   Identities of *-superalgebras and almost polynomial growth [J].
Giambruno, Antonio ;
dos Santos, Rafael Bezerra ;
Vieira, Ana Cristina .
LINEAR & MULTILINEAR ALGEBRA, 2016, 64 (03) :484-501