Adaptive wavelet collocation method simulations of Rayleigh-Taylor instability

被引:27
作者
Reckinger, S. J. [1 ]
Livescu, D. [2 ]
Vasilyev, O. V. [1 ]
机构
[1] Univ Colorado, Boulder, CO 80309 USA
[2] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
基金
美国国家科学基金会;
关键词
SINGLE-MODE; FLOWS; GROWTH; NOVA;
D O I
10.1088/0031-8949/2010/T142/014064
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Numerical simulations of single-mode, compressible Rayleigh-Taylor instability are performed using the adaptive wavelet collocation method (AWCM), which utilizes wavelets for dynamic grid adaptation. Due to the physics-based adaptivity and direct error control of the method, AWCM is ideal for resolving the wide range of scales present in the development of the instability. The problem is initialized consistent with the solutions from linear stability theory. Non-reflecting boundary conditions are applied to prevent the contamination of the instability growth by pressure waves created at the interface. AWCM is used to perform direct numerical simulations that match the early-time linear growth, the terminal bubble velocity and a reacceleration region.
引用
收藏
页数:6
相关论文
共 50 条
[41]   On Rayleigh-Taylor instability in Navier-Stokes-Korteweg equations [J].
Zhang, Xuyan ;
Tian, Fangfang ;
Wang, Weiwei .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2023, 2023 (01)
[42]   Rayleigh-Taylor instability of ionization front around black holes [J].
Park, KwangHo ;
Ricotti, Massimo ;
Di Matteo, Tiziana ;
Reynolds, Christopher S. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2014, 437 (03) :2856-2864
[43]   Rayleigh-Taylor instability in an adiabatic-radiative rare plasma [J].
Rozina, Ch ;
Sania, B. ;
Poedts, S. ;
Ali, S. ;
Maryam, N. .
PHYSICA SCRIPTA, 2023, 98 (04)
[44]   Numerical simulation of Rayleigh-Taylor instability in inviscid and viscous media [J].
Doludenko, A. N. ;
Fortova, S. V. .
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2015, 55 (05) :874-882
[45]   Effects of viscosity and elasticity on Rayleigh-Taylor instability in a cylindrical geometry [J].
Sun, Y. B. ;
Zeng, R. H. ;
Tao, J. J. .
PHYSICS OF PLASMAS, 2021, 28 (06) :1ENG
[46]   Competition between merging and bifurcation in the generalized Rayleigh-Taylor instability [J].
Cauvet, Q. ;
Bernecker, B. ;
Canaud, B. .
PHYSICAL REVIEW E, 2024, 110 (05)
[47]   Numerical study on the jet formation due to Rayleigh-Taylor instability [J].
Li, Yikai ;
Umemura, Akira .
JAPANESE JOURNAL OF APPLIED PHYSICS, 2014, 53 (11)
[48]   Numerical investigations of Rayleigh-Taylor instability with a density gradient layer [J].
Song, Yang ;
Wang, Pei ;
Wang, Lili .
COMPUTERS & FLUIDS, 2021, 220
[49]   Intricate structure of the plasma Rayleigh-Taylor instability in shock tubes [J].
Sadler, James D. D. ;
Louie, Carlton ;
Zhou, Ye .
PHYSICS OF PLASMAS, 2023, 30 (02)
[50]   Nonequilibrium thermohydrodynamic effects on the Rayleigh-Taylor instability in compressible flows [J].
Lai, Huilin ;
Xu, Aiguo ;
Zhang, Guangcai ;
Gan, Yanbiao ;
Ying, Yangjun ;
Succi, Sauro .
PHYSICAL REVIEW E, 2016, 94 (02)