Adaptive wavelet collocation method simulations of Rayleigh-Taylor instability

被引:27
作者
Reckinger, S. J. [1 ]
Livescu, D. [2 ]
Vasilyev, O. V. [1 ]
机构
[1] Univ Colorado, Boulder, CO 80309 USA
[2] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
基金
美国国家科学基金会;
关键词
SINGLE-MODE; FLOWS; GROWTH; NOVA;
D O I
10.1088/0031-8949/2010/T142/014064
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Numerical simulations of single-mode, compressible Rayleigh-Taylor instability are performed using the adaptive wavelet collocation method (AWCM), which utilizes wavelets for dynamic grid adaptation. Due to the physics-based adaptivity and direct error control of the method, AWCM is ideal for resolving the wide range of scales present in the development of the instability. The problem is initialized consistent with the solutions from linear stability theory. Non-reflecting boundary conditions are applied to prevent the contamination of the instability growth by pressure waves created at the interface. AWCM is used to perform direct numerical simulations that match the early-time linear growth, the terminal bubble velocity and a reacceleration region.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Numerical simulation of Rayleigh-Taylor Instability with periodic boundary condition using MPS method
    Guo, Kailun
    Chen, Ronghua
    Li, Yonglin
    Tian, Wenxi
    Su, Guanghui
    Qiu, Suizheng
    PROGRESS IN NUCLEAR ENERGY, 2018, 109 : 130 - 144
  • [32] Numerical simulation of Rayleigh-Taylor instability with large density ratios based on RKDG method
    Tian, Junwu
    Yuan, Xiangjiang
    APPLIED MATERIALS AND TECHNOLOGIES FOR MODERN MANUFACTURING, PTS 1-4, 2013, 423-426 : 1751 - 1756
  • [33] Compressibility effects in Rayleigh-Taylor instability-induced flows
    Gauthier, S.
    Le Creurer, B.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2010, 368 (1916): : 1681 - 1704
  • [34] On the control and suppression of the Rayleigh-Taylor instability using electric fields
    Cimpeanu, Radu
    Papageorgiou, Demetrios T.
    Petropoulos, Peter G.
    PHYSICS OF FLUIDS, 2014, 26 (02)
  • [35] Discrete Boltzmann simulation of Rayleigh-Taylor instability in compressible flows
    Li De-Mei
    Lai Hui-Lin
    Xu Ai-Guo
    Zhang Guang-Cai
    Lin Chuan-Dong
    Gan Yan-Biao
    ACTA PHYSICA SINICA, 2018, 67 (08)
  • [36] The three-dimensional weakly nonlinear Rayleigh-Taylor instability in spherical geometry
    Zhang, J.
    Wang, L. F.
    Wu, J. F.
    Ye, W. H.
    Zou, S. Y.
    Ding, Y. K.
    Zhang, W. Y.
    He, X. T.
    PHYSICS OF PLASMAS, 2020, 27 (02)
  • [37] Viscous Rayleigh-Taylor instability at a dynamic interface in spherical geometry
    Wang, Y. W.
    Sun, Y. B.
    Wang, C.
    Xiao, Y.
    Zeng, R. H.
    PHYSICS OF FLUIDS, 2024, 36 (08)
  • [38] Elastic-plastic Rayleigh-Taylor instability at a cylindrical interface
    Piriz, A. R.
    Piriz, S. A.
    Tahir, N. A.
    PHYSICAL REVIEW E, 2021, 104 (03)
  • [39] Viscous effects on the Rayleigh-Taylor instability with background temperature gradient
    Gerashchenko, S.
    Livescu, D.
    PHYSICS OF PLASMAS, 2016, 23 (07)
  • [40] The Rayleigh-Taylor instability of Newtonian and non-Newtonian fluids
    Doludenko, A. N.
    Fortova, S. V.
    Son, E. E.
    PHYSICA SCRIPTA, 2016, 91 (10)