Adaptive wavelet collocation method simulations of Rayleigh-Taylor instability

被引:27
作者
Reckinger, S. J. [1 ]
Livescu, D. [2 ]
Vasilyev, O. V. [1 ]
机构
[1] Univ Colorado, Boulder, CO 80309 USA
[2] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
基金
美国国家科学基金会;
关键词
SINGLE-MODE; FLOWS; GROWTH; NOVA;
D O I
10.1088/0031-8949/2010/T142/014064
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Numerical simulations of single-mode, compressible Rayleigh-Taylor instability are performed using the adaptive wavelet collocation method (AWCM), which utilizes wavelets for dynamic grid adaptation. Due to the physics-based adaptivity and direct error control of the method, AWCM is ideal for resolving the wide range of scales present in the development of the instability. The problem is initialized consistent with the solutions from linear stability theory. Non-reflecting boundary conditions are applied to prevent the contamination of the instability growth by pressure waves created at the interface. AWCM is used to perform direct numerical simulations that match the early-time linear growth, the terminal bubble velocity and a reacceleration region.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Discrete particle modeling of granular Rayleigh-Taylor instability
    Yu, Z. Y.
    Wu, C. L.
    Berrouk, A. S.
    Nandakumar, K.
    INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2015, 77 : 260 - 270
  • [22] Nonlinear saturation amplitude of cylindrical Rayleigh-Taylor instability
    Liu Wan-Hai
    Yu Chang-Ping
    Ye Wen-Hua
    Wang Li-Feng
    CHINESE PHYSICS B, 2014, 23 (09)
  • [23] Rayleigh-Taylor Instability With Varying Periods of Zero Acceleration
    Aslangil, Denis
    Farley, Zachary
    Lawrie, Andrew G. W.
    Banerjee, Arindam
    JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, 2020, 142 (12):
  • [24] Rayleigh-Taylor instability in elastic-plastic solids
    Piriz, A. R.
    Lopez Cela, J. J.
    Tahir, N. A.
    JOURNAL OF APPLIED PHYSICS, 2009, 105 (11)
  • [25] Inferring the Magnetic Field from the Rayleigh-Taylor Instability
    Grea, Benoit-Joseph
    Briard, Antoine
    ASTROPHYSICAL JOURNAL, 2023, 958 (02)
  • [26] Rayleigh-Taylor instability of a miscible interface in a confined domain
    Lyubimova, T.
    Vorobev, A.
    Prokopev, S.
    PHYSICS OF FLUIDS, 2019, 31 (01)
  • [27] Linear analysis of incompressible Rayleigh-Taylor instability in solids
    Piriz, A. R.
    Lopez Cela, J. J.
    Tahir, N. A.
    PHYSICAL REVIEW E, 2009, 80 (04):
  • [28] Non-equilibrium Thermodynamics of Rayleigh-Taylor Instability
    Sengupta, Tapan K.
    Sengupta, Aditi
    Sengupta, Soumyo
    Bhole, Ashish
    Shruti, K. S.
    INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2016, 37 (04) : 1 - 25
  • [29] Numerical simulations of two-fluid turbulent mixing at large density ratios and applications to the Rayleigh-Taylor instability
    Livescu, D.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2013, 371 (2003):
  • [30] Electrohydrodynamic Rayleigh-Taylor instability in leaky dielectric fluids
    Yang, Qingzhen
    Li, Ben Q.
    Xu, Feng
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2017, 109 : 690 - 704