Color Constancy Using Natural Image Statistics and Scene Semantics

被引:189
作者
Gijsenij, Arjan [1 ]
Gevers, Theo [1 ]
机构
[1] Univ Amsterdam, Fac Sci, NL-1098 XH Amsterdam, Netherlands
关键词
Color constancy; illuminant estimation; natural image statistics; scene semantics; computer vision; TRANSFORMATIONS; ALGORITHMS; SHAPE;
D O I
10.1109/TPAMI.2010.93
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Existing color constancy methods are all based on specific assumptions such as the spatial and spectral characteristics of images. As a consequence, no algorithm can be considered as universal. However, with the large variety of available methods, the question is how to select the method that performs best for a specific image. To achieve selection and combining of color constancy algorithms, in this paper natural image statistics are used to identify the most important characteristics of color images. Then, based on these image characteristics, the proper color constancy algorithm (or best combination of algorithms) is selected for a specific image. To capture the image characteristics, the Weibull parameterization (e.g., grain size and contrast) is used. It is shown that the Weibull parameterization is related to the image attributes to which the used color constancy methods are sensitive. An MoG-classifier is used to learn the correlation and weighting between the Weibull-parameters and the image attributes (number of edges, amount of texture, and SNR). The output of the classifier is the selection of the best performing color constancy method for a certain image. Experimental results show a large improvement over state-of-the-art single algorithms. On a data set consisting of more than 11,000 images, an increase in color constancy performance up to 20 percent (median angular error) can be obtained compared to the best-performing single algorithm. Further, it is shown that for certain scene categories, one specific color constancy algorithm can be used instead of the classifier considering several algorithms.
引用
收藏
页码:687 / 698
页数:12
相关论文
共 46 条
[1]  
[Anonymous], P INT C COMP VIS
[2]  
[Anonymous], P IS T SID 10 COL IM
[3]  
[Anonymous], P C HUM FACT COMP SY
[4]  
[Anonymous], 2005, NEURAL NETWORKS PATT
[5]   A comparison of computational color constancy algorithms - Part I: Methodology and experiments with synthesized data [J].
Barnard, K ;
Cardei, V ;
Funt, B .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2002, 11 (09) :972-984
[6]   A comparison of computational color constancy algorithms - Part II: Experiments with image data [J].
Barnard, K ;
Martin, L ;
Coath, A ;
Funt, B .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2002, 11 (09) :985-996
[7]   A data set for color research [J].
Barnard, K ;
Martin, K ;
Funt, B ;
Coath, A .
COLOR RESEARCH AND APPLICATION, 2002, 27 (03) :147-151
[8]   Perception of color and material properties in complex scenes [J].
Brainard, DH ;
Maloney, LT .
JOURNAL OF VISION, 2004, 4 (09) :II-IV
[9]   Bayesian color constancy [J].
Brainard, DH ;
Freeman, WT .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1997, 14 (07) :1393-1411
[10]   A SPATIAL PROCESSOR MODEL FOR OBJECT COLOR-PERCEPTION [J].
BUCHSBAUM, G .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1980, 310 (01) :1-26