Multiple Imputation Strategies for Multiple Group Structural Equation Models

被引:69
|
作者
Enders, Craig K. [1 ]
Gottschall, Amanda C. [1 ]
机构
[1] Arizona State Univ, Dept Psychol, Tempe, AZ 85287 USA
关键词
MAXIMUM-LIKELIHOOD-ESTIMATION; MISSING-DATA;
D O I
10.1080/10705511.2011.532695
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Although structural equation modeling software packages use maximum likelihood estimation by default, there are situations where one might prefer to use multiple imputation to handle missing data rather than maximum likelihood estimation (e.g., when incorporating auxiliary variables). The selection of variables is one of the nuances associated with implementing multiple imputation, because the imputer must take special care to preserve any associations or special features of the data that will be modeled in the subsequent analysis. For example, this article deals with multiple group models that are commonly used to examine moderation effects in psychology and the behavioral sciences. Special care must be exercised when using multiple imputation with multiple group models, as failing to preserve the interactive effects during the imputation phase can produce biased parameter estimates in the subsequent analysis phase, even when the data are missing completely at random or missing at random. This study investigates two imputation strategies that have been proposed in the literature, product term imputation and separate group imputation. A series of simulation studies shows that separate group imputation adequately preserves the multiple group data structure and produces accurate parameter estimates.
引用
收藏
页码:35 / 54
页数:20
相关论文
共 50 条
  • [1] A Multiple Imputation Score Test for Model Modification in Structural Equation Models
    Mansolf, Maxwell
    Jorgensen, Terrence D.
    Enders, Craig K.
    PSYCHOLOGICAL METHODS, 2020, 25 (04) : 393 - 411
  • [2] Multiple Group Alignment for Exploratory and Structural Equation Models
    Asparouhov, Tihomir
    Muthen, Bengt
    STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2023, 30 (02) : 169 - 191
  • [3] A comparison of multiple imputation strategies to deal with missing nonnormal data in structural equation modeling
    Jia, Fan
    Wu, Wei
    BEHAVIOR RESEARCH METHODS, 2023, 55 (06) : 3100 - 3119
  • [4] A comparison of multiple imputation strategies to deal with missing nonnormal data in structural equation modeling
    Fan Jia
    Wei Wu
    Behavior Research Methods, 2023, 55 : 3100 - 3119
  • [5] Alternative Multiple Imputation Inference for Categorical Structural Equation Modeling
    Chung, Seungwon
    Cai, Li
    MULTIVARIATE BEHAVIORAL RESEARCH, 2019, 54 (03) : 323 - 337
  • [6] Alternative Multiple Imputation Inference for Categorical Structural Equation Modeling
    Chung, Seungwon
    Cai, Li
    MULTIVARIATE BEHAVIORAL RESEARCH, 2018, 53 (01) : 148 - 148
  • [7] Multiple Imputation to Account for Measurement Error in Marginal Structural Models
    Edwards, Jessie K.
    Cole, Stephen R.
    Westreich, Daniel
    Crane, Heidi
    Eron, Joseph J.
    Mathews, W. Christopher
    Moore, Richard
    Boswell, Stephen L.
    Lesko, Catherine R.
    Mugavero, Michael J.
    EPIDEMIOLOGY, 2015, 26 (05) : 645 - 652
  • [8] Model-Robust Estimation of Multiple-Group Structural Equation Models
    Robitzsch, Alexander
    ALGORITHMS, 2023, 16 (04)
  • [9] An Evaluation of Multiple Imputation for Meta-Analytic Structural Equation Modeling
    Furlow, Carolyn F.
    Beretvas, S. Natasha
    JOURNAL OF MODERN APPLIED STATISTICAL METHODS, 2010, 9 (01) : 129 - 143
  • [10] Strategies for Multiple Imputation in Longitudinal Studies
    Spratt, Michael
    Carpenter, James
    Sterne, Jonathan A. C.
    Carlin, John B.
    Heron, Jon
    Henderson, John
    Tilling, Kate
    AMERICAN JOURNAL OF EPIDEMIOLOGY, 2010, 172 (04) : 478 - 487