A survey of visual analytics in urban area

被引:9
作者
Feng, Zezheng [1 ,2 ,3 ]
Qu, Huamin [1 ]
Yang, Shuang-Hua [2 ,4 ]
Ding, Yulong [2 ,3 ,4 ]
Song, Jie [5 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Comp Sci & Engn, Kowloon, Hong Kong, Peoples R China
[2] Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen, Guangdong, Peoples R China
[3] Northeastern Univ, Dept Software Coll, Shenyang, Liaoning, Peoples R China
[4] Southern Univ Sci & Technol, Shenzhen Key Lab Safety & Secur Next Generat Ind, Shenzhen, Guangdong, Peoples R China
[5] Southern Univ Sci & Technol, Acad Adv Interdisciplinary Studies, Shenzhen, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
data mining; urban data; visual analytics; visualization; DESIGN SPACE; VISUALIZATION; SYSTEM; EXPLORATION; PATTERNS; MOBILITY; DIFFUSION; DYNAMICS;
D O I
10.1111/exsy.13065
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Nowadays, the population has been overgrowing due to urbanization, yielding many severe problems in the urban area, including traffic congestion, unbalanced distribution of urban hotspots, air pollution and so on. Due to the uncertainty of the urban environment, it always needs to integrate experts' domain knowledge into solving these issues. In recent years, the visual analytics method has been widely used to assist domain experts in solving urban problems with its intuitiveness, interactivity and interpretability. In this survey, we first introduce the background of urban computing, present the motivation of visual analytics in the urban area and point out the characteristics of visual analytics methods. Second, we introduce the most frequently used urban data, analyse the main properties and provide an overview on how to use these data. Thereafter, we propose our taxonomy for visual analytics in the urban area and illustrate the taxonomy. The taxonomy provides four levels for visual analytics on urban data from a new perspective based on the four stages in data mining. Four levels from our taxonomy include: descriptive analytics, diagnostic analytics, predictive analytics and prescriptive analytics. Finally, we conclude this survey by discussing the limitations of the existing related works and the challenges to visual analytics in the urban area.
引用
收藏
页数:25
相关论文
共 50 条
[41]   Visual analytics for the clustering capability of data [J].
Lu ZhiMao ;
Liu Chen ;
Zhang Qi ;
Zhang ChunXiang ;
Fan DongMei ;
Yang Peng .
SCIENCE CHINA-INFORMATION SCIENCES, 2013, 56 (05) :1-14
[42]   Data and Visual Analytics for Emerging Databases [J].
Leung, Carson K. .
PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON EMERGING DATABASES: TECHNOLOGIES, APPLICATIONS, AND THEORY, 2018, 461 :203-213
[43]   Visual comparative analytics of multimodal transportation [J].
Deng, Zikun ;
Chen, Haoming ;
Lu, Qing-Long ;
Su, Zicheng ;
Schreck, Tobias ;
Bao, Jie ;
Cai, Yi .
VISUAL INFORMATICS, 2025, 9 (01) :18-30
[44]   TriPlan: an interactive visual analytics approach for better tourism route planning [J].
Zhang, Xinyi ;
Pang, Xiao ;
Wen, XiaoLin ;
Wang, Fengjie ;
Lin, Changlin ;
Zhu, Min .
JOURNAL OF VISUALIZATION, 2023, 26 (01) :231-248
[45]   Modeling coordinated multiple views of heterogeneous data cubes for urban visual analytics [J].
Widjaja, Ivo ;
Russo, Patrizia ;
Pettit, Chris ;
Sinnott, Richard ;
Tomko, Martin .
INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2015, 8 (07) :558-578
[46]   ANTENNA: A Tool for Visual Analysis of Urban Mobility based on Cell Phone Data [J].
Silva, Pedro ;
Macas, Catarina ;
Correia, Joao ;
Machado, Penousal ;
Polisciuc, Evgheni .
PROCEEDINGS OF THE 17TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS (IVAPP), VOL 3, 2022, :88-100
[47]   VAUD: A Visual Analysis Approach for Exploring Spatio-Temporal Urban Data [J].
Chen, Wei ;
Huang, Zhaosong ;
Wu, Feiran ;
Zhu, Minfeng ;
Guan, Huihua ;
Maciejewski, Ross .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2018, 24 (09) :2636-2648
[48]   MultiSegVA: Using Visual Analytics to Segment Biologging Time Series on Multiple Scales [J].
Meschenmoser, Philipp ;
Buchmuller, Juri F. ;
Seebacher, Daniel ;
Wikelski, Martin ;
Keim, Daniel A. .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2021, 27 (02) :1623-1633
[49]   Visual analytics and rendering for tunnel crack analysis [J].
Ortner, Thomas ;
Sorger, Johannes ;
Piringer, Harald ;
Hesina, Gerd ;
Groeller, Eduard .
VISUAL COMPUTER, 2016, 32 (6-8) :859-869
[50]   TieVis: Visual Analytics of Evolution of Interpersonal Ties [J].
Lin, Tao ;
Guo, Fangzhou ;
Wu, Yingcai ;
Zhu, Biao ;
Zhang, Fan ;
Qu, Huamin ;
Chen, Wei .
E-LEARNING AND GAMES, 2016, 9654 :412-424