Kahler geometry of toric varieties and extremal metrics

被引:152
作者
Abreu, M [1 ]
机构
[1] Univ Tecn Lisboa, Dept Matemat, Inst Super Tecn, Inst Super Tecn, P-1096 Lisbon, Portugal
关键词
D O I
10.1142/S0129167X98000282
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A (symplectic) toric variety X, of real dimension 2n, is completely determined by its moment polytope a Delta subset of R-n. Recently Guillemin gave an explicit combinatorial way of constructing "toric" Kahler metrics on X, using only data on Delta. In this paper, differential geometric properties of these metrics are investigated using Guillemin's construction. In particular, a nice combinatorial formula for the scalar curvature R is given, and the Euler-Lagrange condition for such "toric" metrics being extremal tin the sense of Calabi) is proven to be R being an affine function on Delta subset of R-n. A construction, due to Calabi, of a 1-parameter family of extremal Kahler metrics of non-constant scalar curvature on CP2 #<(CP)over bar>(2) is recast very simply and explicitly using Guillemin's approach. Finally, we present a curious combinatorial identity for convex polytopes Delta subset of R-n that follows from the wellknown relation between the total integral of the scalar curvature of a Kahler metric and the wedge product of the first Chern class of the underlying complex manifold with a suitable power of the Kahler class.
引用
收藏
页码:641 / 651
页数:11
相关论文
共 9 条
  • [1] Calabi E., 1985, DIFFERENTIAL GEOMETR, P95
  • [2] CALABI E, 1982, ANN MATH STUD, V102, P159
  • [3] Danilov V.I., 1978, Uspekhi Mat. Nauk, V33, P85, DOI 10.1070/RM1978v033n02ABEH002305
  • [4] PERIODIC HAMILTONIANS AND CONVEX IMAGES OF MOMENTUM MAPPING
    DELZANT, T
    [J]. BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1988, 116 (03): : 315 - 339
  • [5] GUILLEMIN V, 1994, J DIFFER GEOM, V40, P285
  • [6] GUILLEMIN V, 1994, Progr. Math., V122
  • [7] LICHNEROWICZ A, 1957, CR HEBD ACAD SCI, V244, P3011
  • [8] Matsushima Y., 1957, Nagoya Math. J., V11, P145
  • [9] A NOTE ON EXTREMAL METRICS OF NONCONSTANT SCALAR CURVATURE
    SIMANCA, SR
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 1992, 78 (01) : 85 - 93