LUDWIG: A parallel Lattice-Boltzmann code for complex fluids

被引:111
|
作者
Desplat, JC
Pagonabarraga, I
Bladon, P
机构
[1] Univ Edinburgh, Edinburgh Parallel Comp Ctr, Edinburgh EH9 3JZ, Midlothian, Scotland
[2] Univ Edinburgh, Dept Phys & Astron, Edinburgh EH9 3JZ, Midlothian, Scotland
基金
英国工程与自然科学研究理事会;
关键词
Lattice-Boltzmann; wetting; computer simulations; parallel computing; binary fluid mixtures;
D O I
10.1016/S0010-4655(00)00205-8
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper describes Ludwig, a versatile code for the simulation of Lattice-Boltzmann (LB) models in 3D on cubic lattices. In fact, Ludwig is not a single code, but a set of codes that share certain common routines, such as I/O and communications. If Ludwig is used as intended, a variety of complex fluid models with different equilibrium free energies are simple to code, so that the user may concentrate on the physics of the problem, rather than on parallel computing issues. Thus far, Ludwig's main application has been to symmetric binary fluid mixtures. We first explain the philosophy and structure of Ludwig which is argued to be a very effective way of developing large codes for academic consortia. Next we elaborate on some parallel implementation issues such as parallel I/O, and the use of MPI to achieve full portability and good efficiency on both MPP and SMP systems. Finally, we describe how to implement generic solid boundaries, and look in detail at the particular case of a symmetric binary fluid mixture near a solid wall. We present a novel scheme for the thermodynamically consistent simulation of wetting phenomena, in the presence of static and moving solid boundaries, and check its performance. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:273 / 290
页数:18
相关论文
共 50 条
  • [11] High-order lattice-Boltzmann
    Philippi, P. C.
    Siebert, D. N.
    Hegele, L. A., Jr.
    Mattila, K. K.
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2016, 38 (05) : 1401 - 1419
  • [12] Zynq SoC based Lattice-Boltzmann Simulation Environment
    Zhai, Xiaojun
    Chen, Minsi
    Esfahani, Sahar Soheilian
    Amira, Abbes
    Bensaali, Faycal
    AbiNahed, Julien
    Dakua, Sarada Prasad
    Al-Ansari, Abdulla
    Zakaria, Ayman
    2019 IEEE 10TH GCC CONFERENCE & EXHIBITION (GCC), 2019,
  • [13] Magnetic Diffusion using Lattice-Boltzmann
    Fonseca, F.
    REVISTA MEXICANA DE FISICA, 2012, 58 (02) : 188 - 194
  • [14] High-order lattice-Boltzmann
    P. C. Philippi
    D. N. Siebert
    L. A. Hegele Jr
    K. K. Mattila
    Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2016, 38 : 1401 - 1419
  • [15] Study of complex charge distributions in an electrolyte using the Poisson-Boltzmann equation by lattice-Boltzmann method
    Fonseca, F.
    Franco, A.
    MICROELECTRONICS JOURNAL, 2008, 39 (11) : 1224 - 1225
  • [16] Evaluation of a lattice-Boltzmann method for mercury intrusion porosimetry simulations
    Hyväluoma, J
    Raiskinmäki, P
    Jäsberg, A
    Koponen, A
    Kataja, M
    Timonen, J
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2004, 20 (06): : 1003 - 1011
  • [17] Lattice-Boltzmann Method for Geophysical Plastic Flows
    Leonardi, Alessandro
    Wittel, Falk K.
    Mendoza, Miller
    Herrmann, Hans J.
    RECENT ADVANCES IN MODELING LANDSLIDES AND DEBRIS FLOWS, 2015, : 131 - 140
  • [18] Lattice-Boltzmann methods for suspensions of solid particles
    Ladd, Anthony J. C.
    MOLECULAR PHYSICS, 2015, 113 (17-18) : 2531 - 2537
  • [19] Analysis of Lattice-Boltzmann methods for internal flows
    Freitas, Rainhill K.
    Henze, Andreas
    Meinke, Matthias
    Schroeder, Wolfgang
    COMPUTERS & FLUIDS, 2011, 47 (01) : 115 - 121
  • [20] Analysing and modelling the performance of the HemeLB lattice-Boltzmann simulation environment
    Groen, Derek
    Hetherington, James
    Carver, Hywel B.
    Nash, Rupert W.
    Bernabeu, Miguel O.
    Coveney, Peter V.
    JOURNAL OF COMPUTATIONAL SCIENCE, 2013, 4 (05) : 412 - 422