Piecewise-linear soliton equations and piecewise-linear integrable maps

被引:17
作者
Quispel, GRW [1 ]
Capel, HW
Scully, J
机构
[1] La Trobe Univ, Dept Math, Bundoora, Vic 3083, Australia
[2] Univ Amsterdam, Inst Theoret Phys, NL-1018 XE Amsterdam, Netherlands
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2001年 / 34卷 / 11期
关键词
D O I
10.1088/0305-4470/34/11/337
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study piecewise-linear integrable systems. The associated piecewise linear solitons, piecewise-linear integrable maps and piecewise-linear Lax representation are discussed.
引用
收藏
页码:2491 / 2503
页数:13
相关论文
共 24 条
  • [1] Ablowitz M.J., 1991, SOLITONS NONLINEAR E
  • [2] ABLOWITZ MJ, 1977, STUD APPL MATH, V57, P11
  • [3] [Anonymous], 1996, SPINNING TOPS
  • [4] Arnold VI, 2013, Mathematical methods of classical mechanics
  • [5] INTEGRABLE SYMPLECTIC MAPS
    BRUSCHI, M
    RAGNISCO, O
    SANTINI, PM
    TU, GZ
    [J]. PHYSICA D, 1991, 49 (03): : 273 - 294
  • [6] Calogero F., 1982, Spectral Transform and Solitons: Tools to Solve and Investigate Nonlinear Evolution Equations, VVolume 1
  • [7] GRAMMATICOS B, 1999, PAINLEVE PROPERTY ON, P417
  • [8] From integrability to chaos in a Lotka-Volterra cellular automaton
    Hirota, R
    Iwao, M
    Ramani, A
    Takahashi, D
    Grammaticos, B
    Ohta, Y
    [J]. PHYSICS LETTERS A, 1997, 236 (1-2) : 39 - 44
  • [9] CONSERVED QUANTITIES OF A CLASS OF NONLINEAR DIFFERENCE-DIFFERENCE EQUATIONS
    HIROTA, R
    TSUJIMOTO, S
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1995, 64 (09) : 3125 - 3127
  • [10] THE DISCRETE KORTEWEG-DE VRIES EQUATION
    NIJHOFF, F
    CAPEL, H
    [J]. ACTA APPLICANDAE MATHEMATICAE, 1995, 39 (1-3) : 133 - 158