The transport and fate of many contaminants in subsurface systems can be influenced by several coupled processes, such as nonlinear, rate-limited sorption and biodegradation. We investigated the transport in soil of a model organic compound, 2,4-dichlorophenoxyacetic acid (2,4-D), influenced by nonlinear, rate-limited sorption and biodegradation. Miscible displacement and batch sorption experiments were conducted using a wide range of solute concentrations to investigate the impact of concentration-dependent behavior on transport. The sorption isotherm was approximately linear at a low concentration, and nonlinear over the extended range of concentrations. Results from the transport experiments, with the fitted N values approaching 1 at low input concentrations, were consistent with the batch sol prion study. Nonlinear sorption significantly influenced the position of the breakthrough curves because of concentration-dependent retardation. However, although both nonlinear and rare-limited sorption influenced the shape of the breakthrough curves, the impact of rate-limited sorption was greater. The effective travel time of 2,4-D transport is influenced by synergistic interactions between sorption and biodegradation. For example, the sequential rightward shift of the breakthrough curves with decreasing input concentration, due to nonlinear sorption of 2,4-D, is enhanced by biodegradation.