Electronic Transport Inhibiting of Carbon Nanotubes by 5f Elements

被引:6
作者
Wang, Jia [1 ,2 ]
Gong, Kui [3 ]
Lu, Feifei [3 ]
Xie, Weiyu [1 ]
Zhu, Yu [1 ]
Wang, Zhigang [1 ]
机构
[1] Jilin Univ, Inst Atom & Mol Phys, Changchun 130012, Peoples R China
[2] Jilin Normal Univ, Coll Informat & Technol, Siping 136000, Peoples R China
[3] Hongzhiwei Technol Shanghai Co Ltd, 1888 Xinjinqiao Rd, Shanghai 201206, Peoples R China
基金
中国国家自然科学基金;
关键词
5f electrons; density functional theory; electronic transport; non-equilibrium Green's function; CONDUCTIVITY; SUPERCONDUCTIVITY; MAGNETORESISTANCE; 1ST-PRINCIPLES; RESISTANCE;
D O I
10.1002/adts.201900226
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Based on the combination of the non-equilibrium Green's function and density functional theory, a theoretical method for studying the transport behavior of high angular momentum 5f electrons is developed and the transport properties of the structure for actinide atoms embedded in carbon nanotubes (An@CNTs, An = Ac, Th, Pa and U) is reported. Results show that An@CNTs have lower transmission coefficients than that of CNTs. Furthermore, electrical bias to the U@(4, 4)/(5, 5) CNTs induces an additional transition spectral peak, which demonstrates that the U@(4, 4)/(5, 5) CNTs has a lower resistance. Therefore, 5f electrons of actinide atoms inhibit the electronic transport of CNTs. These findings may provide fresh insight into the transport properties of systems having higher angular momentum electrons.
引用
收藏
页数:6
相关论文
共 47 条
[1]   Toward reliable density functional methods without adjustable parameters: The PBE0 model [J].
Adamo, C ;
Barone, V .
JOURNAL OF CHEMICAL PHYSICS, 1999, 110 (13) :6158-6170
[2]   Thermal conductivity of actinide mononitride solid solutions [J].
Arai, Y ;
Nakajima, K ;
Suzuki, Y .
JOURNAL OF ALLOYS AND COMPOUNDS, 1998, 271 :602-605
[3]   Magnetic order in Pu2M3Si5 (M = Co, Ni) [J].
Bauer, E. D. ;
Tobash, P. H. ;
Mitchell, J. N. ;
Kennison, J. A. ;
Ronning, F. ;
Scott, B. L. ;
Thompson, J. D. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2011, 23 (09)
[4]   Segmented contraction scheme for small-core lanthanide pseudopotential basis sets [J].
Cao, XY ;
Dolg, M .
JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM, 2002, 581 :139-147
[5]   Electronic and transport properties of nanotubes [J].
Charlier, Jean-Christophe ;
Blase, Xavier ;
Roche, Stephan .
REVIEWS OF MODERN PHYSICS, 2007, 79 (02) :677-732
[6]   Large on-off ratios and negative differential resistance in a molecular electronic device [J].
Chen, J ;
Reed, MA ;
Rawlett, AM ;
Tour, JM .
SCIENCE, 1999, 286 (5444) :1550-1552
[7]   Electronic Transport and Mechanical Properties of Phosphorus- and Phosphorus-Nitrogen-Doped Carbon Nanotubes [J].
Cruz-Silva, Eduardo ;
Lopez-Urias, Florentino ;
Munoz-Sandoval, Emilio ;
Sumpter, Bobby G. ;
Terrones, Humberto ;
Charlier, Jean-Christophe ;
Meunier, Vincent ;
Terrones, Mauricio .
ACS NANO, 2009, 3 (07) :1913-1921
[8]   Identification of electron donor states in N-doped carbon nanotubes [J].
Czerw, R ;
Terrones, M ;
Charlier, JC ;
Blase, X ;
Foley, B ;
Kamalakaran, R ;
Grobert, N ;
Terrones, H ;
Tekleab, D ;
Ajayan, PM ;
Blau, W ;
Rühle, M ;
Carroll, DL .
NANO LETTERS, 2001, 1 (09) :457-460
[9]   High-conducting magnetic nanowires obtained from uniform titanium-covered carbon nanotubes [J].
Dag, S ;
Durgun, E ;
Ciraci, S .
PHYSICAL REVIEW B, 2004, 69 (12)
[10]   COEXISTENCE OF LOCAL MOMENT MAGNETISM AND HEAVY-FERMION SUPERCONDUCTIVITY IN UPD2AL3 [J].
FEYERHERM, R ;
AMATO, A ;
GYGAX, FN ;
SCHENCK, A ;
GEIBEL, C ;
STEGLICH, F ;
SATO, N ;
KOMATSUBARA, T .
PHYSICAL REVIEW LETTERS, 1994, 73 (13) :1849-1852