On W-Algebras Associated to (2, p) Minimal Models and Their Representations

被引:43
作者
Adamovic, Drazen [2 ]
Milas, Antun [1 ]
机构
[1] SUNY Albany, Dept Math & Stat, Albany, NY 12222 USA
[2] Univ Zagreb, Dept Math, HR-10000 Zagreb, Croatia
基金
美国国家科学基金会;
关键词
MODULAR INVARIANCE; CHARACTERS; FUSION;
D O I
10.1093/imrn/rnq016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For every odd p >= 3, we investigate the representation theory of the vertex algebra W-2,W- p associated to (2, p) minimal models for the Virasoro algebras. We demonstrate that vertex algebras W-2,W- p are C-2 cofinite and irrational. Complete classification of irreducible representations for W-2,W-3 is obtained, while the classification for p >= 5 is subject to certain constant term identities.. These identities can be viewed as "logarithmic deformations" of Dyson and Selberg constant term identities, and are of independent interest.
引用
收藏
页码:3896 / 3934
页数:39
相关论文
共 39 条
[2]   Logarithmic intertwining operators and W(2,2p-1) algebras N [J].
Adamovic, Drazen ;
Milas, Antun .
JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (07)
[3]   On the triplet vertex algebra W(p) [J].
Adamovic, Drazen ;
Milas, Antun .
ADVANCES IN MATHEMATICS, 2008, 217 (06) :2664-2699
[4]  
Adamovic D, 2009, CONTEMP MATH, V497, P1
[5]   Lattice construction of logarithmic modules for certain vertex algebras [J].
Adamovic, Drazen ;
Milas, Antun .
SELECTA MATHEMATICA-NEW SERIES, 2009, 15 (04) :535-561
[6]   The N=1 Triplet Vertex Operator Superalgebras: Twisted Sector [J].
Adamovic, Drazen ;
Milas, Antun .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2008, 4
[7]   The N=1 Triplet Vertex Operator Superalgebras [J].
Adamovic, Drazen ;
Milas, Antun .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 288 (01) :225-270
[8]  
Andrews G. E., 1986, CBMS REGIONAL C SERI, V66, pxii+130
[9]  
[Anonymous], 1993, PROGR MATH
[10]  
[Anonymous], ARXIV07102687