On some geometric properties for the combination of generalized Lommel-Wright function

被引:9
作者
Zayed, Hanaa M. [1 ]
Bulboaca, Teodor [2 ]
机构
[1] Menoufia Univ, Fac Sci, Dept Math & Comp Sci, Shibin Al Kawm 32511, Egypt
[2] Babes Bolyai Univ, Fac Math & Comp Sci, Cluj Napoca 400084, Romania
关键词
Analytic; Univalent; Starlike; Convex; Close-to-convex; Generalized Lommel-Wright functions; HARDY SPACE;
D O I
10.1186/s13660-021-02690-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The scope of our investigation is to study the geometric properties of the normalized form of the combination of generalized Lommel-Wright function J(nu,lambda)(mu,m) defined by J(nu,lambda)(mu,m) (z) := Gamma(m)(lambda+ 1)Gamma(lambda +nu + 1)2(2 lambda)+(nu)z(1-(nu/2))-lambda I-nu,lambda(mu,m) (root z), where I-nu,lambda(mu,m) (z) := (1 - 2 lambda -nu)J(nu lambda)(mu,m.)(z) + z(J(nu),(mu,m.)(lambda) (z))' and J(nu,lambda)(mu,m) (z) = (z/2)2 lambda+nu Sigma(infinity)(n=0)(-1)n/Gamma m(n+lambda+1)Gamma(n mu + nu + lambda +1)(z/2)(2n), with m is an element of N, mu > 0 and lambda, nu is an element of C, including starlikeness and convexity of order alpha (0 <= alpha < 1) in the open unit disc using the two-sided inequality for the Fox-Wright functions that has been proved by Pogany and Srivastava in (Comput. Math. Appl. 57(1):127-140, 2009). Further, the orders of starlikeness and convexity are also evaluated using some classical tools. We then compare the orders of starlikeness and convexity given by both techniques to illustrate the efficacy of the approach. In addition, we proved that for some values of a, if lambda > -1 then Re(J(nu,lambda)(mu,m) (z)/z) > a, z is an element of U, and if lambda = (root 10 - 6)/4 then the function (J(nu,lambda)(mu,m) (z(2))/z) * sin z is close-to-convex with respect to 1/2 log((1 + z)/(1 - z)) where * stands for the Hadamard product (or convolution) of two power series.
引用
收藏
页数:19
相关论文
共 17 条
[1]  
A, 2006, Mathematica, V48, P127
[2]   Starlikeness and convexity of generalized Bessel functions [J].
Baricz, Arpad ;
Ponnusamy, Saminathan .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2010, 21 (09) :641-653
[3]  
de Oteiza M.B.M., 1986, REV T C FAC ING, V9, P33
[4]  
FEJER L., 1936, Acta Litt. Sci, V8, P89
[5]  
Kilbas A.A., 2002, FRACT CALC APPL ANAL, V5, P437
[6]   UNIVALENCE OF GAUSSIAN AND CONFLUENT HYPERGEOMETRIC-FUNCTIONS [J].
MILLER, SS ;
MOCANU, PT .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 110 (02) :333-342
[7]   DIFFERENTIAL SUBORDINATIONS AND INEQUALITIES IN THE COMPLEX-PLANE [J].
MILLER, SS ;
MOCANU, PT .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1987, 67 (02) :199-211
[8]  
Orhan H., 2014, ANN ALEXANDRU IOAN C, DOI [10.2478/aicu-2014-0007, DOI 10.2478/AICU-2014-0007]
[9]  
Ozaki S., 1935, Sci. Rep. Tokyo Bunrika Daig, V40, P167
[10]  
PATHAK RS, 1966, P NATL A SCI INDIA A, V36, P81