Directional Exciton-Energy Transport in a Lateral Heteromonolayer of WSe2-MoSe2

被引:24
作者
Shimasaki, Masafumi [1 ]
Nishihara, Taishi [1 ]
Matsuda, Kazunari [1 ]
Endo, Takahiko [2 ]
Takaguchi, Yuhei [2 ]
Liu, Zheng [3 ]
Miyata, Yasumitsu [2 ]
Miyauchi, Yuhei [1 ]
机构
[1] Kyoto Univ, Inst Adv Energy, Kyoto 6110011, Japan
[2] Tokyo Metropolitan Univ, Dept Phys, Tokyo 1920397, Japan
[3] Natl Inst Adv Ind Sci & Technol, Innovat Funct Mat Res Inst, Nagoya, Aichi 4638560, Japan
关键词
transition metal dichalcogenides; exciton; energy transport; excitonic device; lateral heterostructure; INPLANE HETEROSTRUCTURES; VALLEY POLARIZATION; EPITAXIAL-GROWTH; SINGLE-LAYER; MONOLAYER; MOS2; DYNAMICS;
D O I
10.1021/acsnano.2c01890
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Controlling the direction of exciton-energy flow in two-dimensional (2D) semiconductors is crucial for developing future high-speed optoelectronic devices using excitons as the information carriers. However, intrinsic exciton diffusion in conventional 2D semiconductors is omnidirectional, and efficient exciton-energy transport in a specific direction is difficult to achieve. Here we demonstrate directional exciton-energy transport across the interface in tungsten diselenide (WSe2)-molybdenum diselenide (MoSe2) lateral heterostructures. Unidirectional transport is spontaneously driven by the built-in asymmetry of the exciton-energy landscape with respect to the heterojunction interface. At excitation positions close to the interface, the exciton photoluminescence (PL) intensity was substantially decreased in the WSe2 region and enhanced in the MoSe2 region. In PL excitation spectroscopy, it was confirmed that the observed phenomenon arises from lateral exciton-energy transport from WSe2 to MoSe2. This directional exciton-energy flow in lateral 2D heterostructures can be exploited in future optoelectronic devices.
引用
收藏
页码:8205 / 8212
页数:8
相关论文
共 63 条
[1]   Photocarrier Transfer across Monolayer MoS2-MoSe2 Lateral Heterojunctions [J].
Bellus, Matthew Z. ;
Mahjouri-Samani, Masoud ;
Lane, Samuel D. ;
Oyedele, Akinola D. ;
Li, Xufan ;
Puretzky, Alexander A. ;
Geohegan, David ;
Xiao, Kai ;
Zhao, Hui .
ACS NANO, 2018, 12 (07) :7086-7092
[2]   Diffusion-Mediated Synthesis of MoS2/WS2 Lateral Heterostructures [J].
Bogaert, Kevin ;
Liu, Song ;
Chesin, Jordan ;
Titow, Denis ;
Gradecak, Silvija ;
Garaj, Slaven .
NANO LETTERS, 2016, 16 (08) :5129-5134
[3]   Excitonic Linewidth Approaching the Homogeneous Limit in MoS2-Based van der Waals Heterostructures [J].
Cadiz, F. ;
Courtade, E. ;
Robert, C. ;
Wang, G. ;
Shen, Y. ;
Cai, H. ;
Taniguchi, T. ;
Watanabe, K. ;
Carrere, H. ;
Lagarde, D. ;
Manca, M. ;
Amand, T. ;
Renucci, P. ;
Tongay, S. ;
Marie, X. ;
Urbaszek, B. .
PHYSICAL REVIEW X, 2017, 7 (02)
[4]   Valley-selective circular dichroism of monolayer molybdenum disulphide [J].
Cao, Ting ;
Wang, Gang ;
Han, Wenpeng ;
Ye, Huiqi ;
Zhu, Chuanrui ;
Shi, Junren ;
Niu, Qian ;
Tan, Pingheng ;
Wang, Enge ;
Liu, Baoli ;
Feng, Ji .
NATURE COMMUNICATIONS, 2012, 3
[5]   Lateral Built-In Potential of Monolayer MoS2-WS2 In-Plane Heterostructures by a Shortcut Growth Strategy [J].
Chen, Kun ;
Wan, Xi ;
Xie, Weiguang ;
Wen, Jinxiu ;
Kang, Zhiwen ;
Zeng, Xiaoliang ;
Chen, Huanjun ;
Xu, Jianbin .
ADVANCED MATERIALS, 2015, 27 (41) :6431-+
[6]   Exciton Binding Energy and Nonhydrogenic Rydberg Series in Monolayer WS2 [J].
Chernikov, Alexey ;
Berkelbach, Timothy C. ;
Hill, Heather M. ;
Rigosi, Albert ;
Li, Yilei ;
Aslan, Ozgur Burak ;
Reichman, David R. ;
Hybertsen, Mark S. ;
Heinz, Tony F. .
PHYSICAL REVIEW LETTERS, 2014, 113 (07)
[7]  
Duan XD, 2014, NAT NANOTECHNOL, V9, P1024, DOI [10.1038/NNANO.2014.222, 10.1038/nnano.2014.222]
[8]   Valley trion dynamics in monolayer MoSe2 [J].
Gao, Feng ;
Gong, Yongji ;
Titze, Michael ;
Almeida, Raybel ;
Ajayan, Pulickel M. ;
Li, Hebin .
PHYSICAL REVIEW B, 2016, 94 (24)
[9]   Van der Waals heterostructures [J].
Geim, A. K. ;
Grigorieva, I. V. .
NATURE, 2013, 499 (7459) :419-425
[10]  
Gong YJ, 2014, NAT MATER, V13, P1135, DOI [10.1038/nmat4091, 10.1038/NMAT4091]