Nonequilibrium Solute Capture in Passivating Oxide Films

被引:82
作者
Yu, Xiao-xiang [1 ]
Gulec, Ahmet [1 ]
Sherman, Quentin [1 ]
Cwalina, Katie Lutton [2 ]
Scully, John R. [2 ]
Perepezko, John H. [3 ]
Voorhees, Peter W. [1 ]
Marks, Laurence D. [1 ]
机构
[1] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA
[2] Univ Virginia, Dept Mat Sci & Engn, POB 400745,395 McCormick Rd, Charlottesville, VA 22904 USA
[3] Univ Wisconsin Madison, Dept Mat Sci & Engn, 1509 Univ Ave, Madison, WI 53706 USA
关键词
POINT-DEFECT MODEL; HIGH-TEMPERATURE OXIDATION; IRON-CHROMIUM-NICKEL; OSTWALDS STEP RULE; WARM-UP PROCESS; GROWTH-KINETICS; RAPID SOLIDIFICATION; ALLOY SOLIDIFICATION; ANODIC-DISSOLUTION; CR ALLOYS;
D O I
10.1103/PhysRevLett.121.145701
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We report experimental results on the composition and crystallography of oxides formed on NiCrMo alloys during both high-temperature oxidation and aqueous corrosion experiments. Detailed characterization using transmission electron microscopy and diffraction, aberration-corrected chemical analysis, and atom probe tomography shows unexpected combinations of composition and crystallography, far outside thermodynamic solubility limits. The results are explained using a theory for nonequilibrium solute capture that combines thermodynamic, kinetic, and density functional theory analyses. In this predictive nonequilibrium framework, the composition and crystallography are controlled by the rapidly moving interface. The theoretical framework explains the unusual combinations of composition and crystallography, which we predict will be common for many other systems in oxidation and corrosion, and other solid-state processes involving nonequilibrium moving interfaces.
引用
收藏
页数:7
相关论文
共 107 条
[1]   Layer-by-Layer Epitaxial Growth of Defect-Engineered Strontium Cobaltites [J].
Andersen, Tassie K. ;
Cook, Seyoung ;
Wan, Gang ;
Hong, Hawoong ;
Marks, Laurence D. ;
Fong, Dillon D. .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (06) :5949-5958
[2]  
[Anonymous], 1966, ATLAS ELECTROCHEMICA
[3]   Solidification microstructures and solid-state parallels: Recent developments, future directions [J].
Asta, M. ;
Beckermann, C. ;
Karma, A. ;
Kurz, W. ;
Napolitano, R. ;
Plapp, M. ;
Purdy, G. ;
Rappaz, M. ;
Trivedi, R. .
ACTA MATERIALIA, 2009, 57 (04) :941-971
[4]   TRANSPORT PROCESSES DURING THE GROWTH OF OXIDE-FILMS AT ELEVATED-TEMPERATURE [J].
ATKINSON, A .
REVIEWS OF MODERN PHYSICS, 1985, 57 (02) :437-470
[5]   CONTINUOUS GROWTH-MODEL FOR INTERFACE MOTION DURING ALLOY SOLIDIFICATION [J].
AZIZ, MJ ;
KAPLAN, T .
ACTA METALLURGICA, 1988, 36 (08) :2335-2347
[7]   MODEL FOR SOLUTE REDISTRIBUTION DURING RAPID SOLIDIFICATION [J].
AZIZ, MJ .
JOURNAL OF APPLIED PHYSICS, 1982, 53 (02) :1158-1168
[8]  
Baker J.C., 1971, SOLIDIFICATION, P23
[9]   SOLUTE TRAPPING BY RAPID SOLIDIFICATION [J].
BAKER, JC ;
CAHN, JW .
ACTA METALLURGICA, 1969, 17 (05) :575-&
[10]   Corrosion modelling of iron based alloy in nuclear waste repository [J].
Bataillon, C. ;
Bouchon, F. ;
Chainais-Hillairet, C. ;
Desgranges, C. ;
Hoarau, E. ;
Martin, F. ;
Perrin, S. ;
Tupin, M. ;
Talandier, J. .
ELECTROCHIMICA ACTA, 2010, 55 (15) :4451-4467