Kolmogorov's spline network

被引:35
作者
Igelnik, B [1 ]
Parikh, N [1 ]
机构
[1] Pegasus Technol Inc, Mentor, OH 44060 USA
来源
IEEE TRANSACTIONS ON NEURAL NETWORKS | 2003年 / 14卷 / 04期
关键词
cubic splines; ensemble of networks; Kolmogorov's superposition theorem (KST);
D O I
10.1109/TNN.2003.813830
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, an innovative neural-network architecture is proposed and elucidated. This architecture, based on the Kolmogorov's superposition theorem and called the Kolmogorov's spline network (KSN), utilizes more degrees of adaptation to data than currently used neural-network architectures (NNAs). By using cubic spline technique of approximation, both for activation and internal functions, more efficient approximation of multivariate functions can be achieved. The bound on approximation error and number of adjustable parameters, derived in this paper, favorably compares KSN with other one-bidden layer feedforward NNAs. The training of KSN, using the ensemble approach and the ensemble multinet, is described. A new explicit algoirithm for constructing cubic splines is presented.
引用
收藏
页码:725 / 733
页数:9
相关论文
共 36 条