Boundary blow-up solutions for a class of quasilinear elliptic equations

被引:0
|
作者
Miao, Qing [1 ]
Yang, Zuodong [1 ,2 ]
机构
[1] Nanjing Normal Univ, Sch Math Sci, Inst Math, Nanjing 210046, Jiangsu, Peoples R China
[2] Nanjing Normal Univ, Coll Zhongbei, Nanjing 210046, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
quasilinear elliptic equation; blow-up solutions; lower and upper solutions; fixed point theory; weak comparison principle; POSITIVE SOLUTIONS; EXISTENCE;
D O I
10.1080/00036811.2010.502114
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a given bounded domain Omega in R-N with smooth boundary partial derivative Omega, we give sufficient conditions on f so that the m-Laplacian equation Delta(m)u=f(x, u, del u) admits a boundary blow-up solution u is an element of W-1,W-p(Omega). Our main results are new and extend the results in J.V. Concalves and Angelo Roncalli [Boundary blow-up solutions for a class of elliptic equations on a bounded domain, Appl. Math. Comput. 182 ( 2006), pp. 13-23]. Our approach employs the method of lower-upper solution theorem, fixed point theory and weak comparison principle.
引用
收藏
页码:1893 / 1905
页数:13
相关论文
共 50 条