A generalized finite element formulation for arbitrary basis functions: From isogeometric analysis to XFEM

被引:189
作者
Benson, D. J. [1 ]
Bazilevs, Y. [1 ]
De Luycker, E. [1 ]
Hsu, M. -C. [1 ]
Scott, M. [2 ]
Hughes, T. J. R. [2 ]
Belytschko, T. [3 ]
机构
[1] Univ Calif San Diego, Dept Struct Engn, La Jolla, CA 92093 USA
[2] Univ Texas Austin, Inst Computat Engn & Sci, Austin, TX 78712 USA
[3] Northwestern Univ, Dept Mech Engn, Evanston, IL 60208 USA
基金
美国国家科学基金会;
关键词
isogeometric analysis; NURBS; shells; XFEM; generalized elements; FLUID-STRUCTURE INTERACTION; ALGORITHMS; DYNAMICS; CONTACT; NURBS;
D O I
10.1002/nme.2864
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Many of the formulations of cm-rent research interest, including iosogeometric methods and the extended finite element method, use nontraditional basis functions. Some, such as subdivision surfaces, may not have convenient analytical representations. The concept of an element, if appropriate at all, no longer coincides with the traditional definition. Developing a new software for each new class of basis functions is a large research burden, especially, if the problems involve large deformations, non-linear materials, and contact. The objective of this paper is to present a method that separates as much as possible the generation and evaluation of the basis functions from the analysis, resulting in a formulation that can be implemented within the traditional structure of a finite clement program but that permits the use of arbitrary sets of basis functions that are defined only through the input file. Elements ranging from a traditional linear four-node tetrahedron through a higher-order element combining XFEM and isogeometric analysis may be specified entirely through an input file without any additional programming. Examples of this framework to applications with Lagrange elements, isogeometric elements, and XFEM basis functions for fracture are presented. Copyright (C) 2010 John Wiley & Sons, Ltd.
引用
收藏
页码:765 / 785
页数:21
相关论文
共 40 条
  • [1] The role of continuity in residual-based variational multiscale modeling of turbulence
    Akkerman, I.
    Bazilevs, Y.
    Calo, V. M.
    Hughes, T. J. R.
    Hulshoff, S.
    [J]. COMPUTATIONAL MECHANICS, 2008, 41 (03) : 371 - 378
  • [2] NURBS-based isogeometric analysis for the computation of flows about rotating components
    Bazilevs, Y.
    Hughes, T. J. R.
    [J]. COMPUTATIONAL MECHANICS, 2008, 43 (01) : 143 - 150
  • [3] Isogeometric fluid-structure interaction: theory, algorithms, and computations
    Bazilevs, Y.
    Calo, V. M.
    Hughes, T. J. R.
    Zhang, Y.
    [J]. COMPUTATIONAL MECHANICS, 2008, 43 (01) : 3 - 37
  • [4] Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows
    Bazilevs, Y.
    Calo, V. M.
    Cottrell, J. A.
    Hughes, T. J. R.
    Reali, A.
    Scovazzi, G.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2007, 197 (1-4) : 173 - 201
  • [5] Isogeometric fluid-structure interaction analysis with applications to arterial blood flow
    Bazilevs, Y.
    Calo, V. M.
    Zhang, Y.
    Hughes, T. J. R.
    [J]. COMPUTATIONAL MECHANICS, 2006, 38 (4-5) : 310 - 322
  • [6] Isogeometric analysis using T-splines
    Bazilevs, Y.
    Calo, V. M.
    Cottrell, J. A.
    Evans, J. A.
    Hughes, T. J. R.
    Lipton, S.
    Scott, M. A.
    Sederberg, T. W.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (5-8) : 229 - 263
  • [7] Belytschko T, 1999, INT J NUMER METH ENG, V45, P601, DOI 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO
  • [8] 2-S
  • [9] EXPLICIT ALGORITHMS FOR THE NONLINEAR DYNAMICS OF SHELLS
    BELYTSCHKO, T
    LIN, JI
    TSAY, CS
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1984, 42 (02) : 225 - 251
  • [10] Belytschko T., 2001, NONLINEAR FINITE ELE