A five-equation model for the numerical simulation of interfaces in two-phase flows

被引:24
作者
Allaire, G [1 ]
Clerc, S
Kokh, S
机构
[1] Univ Paris 06, Anal Numer Lab, F-75252 Paris 5, France
[2] CEA Saclay, SERMA, DMT, DRN, F-91191 Gif Sur Yvette, France
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE | 2000年 / 331卷 / 12期
关键词
D O I
10.1016/S0764-4442(00)01753-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the Eulerian approach for simulating interfaces in two-phase Rows, the main difficulties arise from the tired character of the mesh which does not follow the interface. Therefore. near the interface there are computational cells containing both fluids which require a suitable modelling of the mixture. Furthermore. most numerical algorithms, such as the volume of fluid or the level set method, involve the transport of a function indicating the localization of each phase. Due to unavoidable numerical diffusion. they have the tendency to thicken this mixture layer around the interface. It is thus necessary to model correctly the two-phase mixture. In the context of compressible gas dynamics we propose such a model. valid for any type of state laws, which satisfies an important property of pressure stability through the interface. (C) 2000 Academie des sciences/Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:1017 / 1022
页数:6
相关论文
共 17 条
[1]   How to prevent pressure oscillations in multicomponent flow calculations: A quasi conservative approach [J].
Abgrall, R .
JOURNAL OF COMPUTATIONAL PHYSICS, 1996, 125 (01) :150-160
[2]  
ALLAIRE G, UNPUB 5 EQUATION MOD
[3]  
[Anonymous], 1996, LEVEL SET METHODS
[4]  
Fedkiw RP, 1999, J COMPUT PHYS, V152, P457, DOI 10.1006/jcph.1999.6136
[5]  
Godlewski E., 1996, NUMERICAL APPROXIMAT
[6]   VOLUME OF FLUID (VOF) METHOD FOR THE DYNAMICS OF FREE BOUNDARIES [J].
HIRT, CW ;
NICHOLS, BD .
JOURNAL OF COMPUTATIONAL PHYSICS, 1981, 39 (01) :201-225
[7]   MULTICOMPONENT FLOW CALCULATIONS BY A CONSISTENT PRIMITIVE ALGORITHM [J].
KARNI, S .
JOURNAL OF COMPUTATIONAL PHYSICS, 1994, 112 (01) :31-43
[8]  
KOKH S, THESIS
[9]   MODELING MERGING AND FRAGMENTATION IN MULTIPHASE FLOWS WITH SURFER [J].
LAFAURIE, B ;
NARDONE, C ;
SCARDOVELLI, R ;
ZALESKI, S ;
ZANETTI, G .
JOURNAL OF COMPUTATIONAL PHYSICS, 1994, 113 (01) :134-147
[10]  
LAGOUTIERE F, 2000, 2843 CEA