Overcoming Diffusion-Limited Trapping in Nanoaperture Tweezers Using Opto-Thermal-Induced Flow

被引:63
作者
Kotnala, Abhay [1 ,2 ]
Kollipara, Pavana Siddhartha [1 ,2 ]
Li, Jingang [1 ,2 ]
Zheng, Yuebing [1 ,2 ]
机构
[1] Univ Texas Austin, Walker Dept Mech Engn, Mat Sci & Engn Program, Austin, TX 78712 USA
[2] Univ Texas Austin, Texas Mat Inst, Austin, TX 78712 USA
基金
美国国家卫生研究院; 美国国家航空航天局; 美国国家科学基金会;
关键词
Optical trapping plasmonic tweezers; convection flow; nanoaperture; Marangom convection; ENHANCED RAMAN-SCATTERING; NANOPARTICLES; FLUORESCENCE; MANIPULATION; EXCITATION; EMISSION;
D O I
10.1021/acs.nanolett.9b04876
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Nanoaperture-based plasmonic tweezers have shown tremendous potential in trapping, sensing, and spectroscopic analysis of nano-objects with single-molecule sensitivity. However, the trapping process is often diffusion-limited and therefore suffers from low-throughput. Here, we present bubble- and convection-assisted trapping techniques, which use opto-thermally generated Marangoni and Rayleigh-Benard convection flow to rapidly deliver particles from large distances to the nanoaperture instead of relying on normal diffusion, enabling a reduction of 1-2 orders of magnitude in particle-trapping time (i.e., time before a particle is trapped). At a concentration of 2 x 10(7) particles/mL, average particle-trapping times in bubble- and convection-assisted trapping were 7 and 18 s, respectively, compared with more than 300 s in the diffusion-limited trapping. Trapping of a single particle at an ultralow concentration of 2 x 10(6) particles/mL was achieved within 2-3 min, which would otherwise take several hours in the diffusion-limited trapping. With their quick delivery and local concentrating of analytes at the functional surfaces, our convection- and bubble-assisted trapping could lead to enhanced sensitivity and throughput of nanoaperture-based plasmonic sensors.
引用
收藏
页码:768 / 779
页数:12
相关论文
共 71 条
[1]   Label-Free Free-Solution Single-Molecule Protein Small Molecule Interaction Observed by Double-Nanohole Plasmonic Trapping [J].
Al Balushi, Ahmed A. ;
Gordon, Reuven .
ACS PHOTONICS, 2014, 1 (05) :389-393
[2]   Optical trapping and control of a dielectric nanowire by a nanoaperture [J].
Aporvari, Mehdi Shafiei ;
Kheirandish, Fardin ;
Volpe, Giovanni .
OPTICS LETTERS, 2015, 40 (20) :4807-4810
[3]  
Berthelot J, 2014, NAT NANOTECHNOL, V9, P295, DOI [10.1038/NNANO.2014.24, 10.1038/nnano.2014.24]
[4]   Sensing with periodic nanohole arrays [J].
Blanchard-Dionne, Andre-Pierre ;
Meunier, Michel .
ADVANCES IN OPTICS AND PHOTONICS, 2017, 9 (04) :891-940
[5]   Nanohole-enhanced Raman scattering [J].
Brolo, AG ;
Arctander, E ;
Gordon, R ;
Leathem, B ;
Kavanagh, KL .
NANO LETTERS, 2004, 4 (10) :2015-2018
[6]   FRET Enhancement in Aluminum Zero-Mode Waveguides [J].
de Torres, Juan ;
Ghenuche, Petru ;
Moparthi, Satish Babu ;
Grigoriev, Victor ;
Wenger, Jerome .
CHEMPHYSCHEM, 2015, 16 (04) :782-788
[7]   Surface Enhanced Raman Scattering on a Single Nanometric Aperture [J].
Djaker, Nadia ;
Hostein, Richard ;
Devaux, Eloise ;
Ebbesen, Thomas W. ;
Rigneault, Herve ;
Wenger, Jerome .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (39) :16250-16256
[8]   Plasmon-Assisted Optofluidics [J].
Donner, Jon S. ;
Baffou, Guillaume ;
McCloskey, David ;
Quidant, Romain .
ACS NANO, 2011, 5 (07) :5457-5462
[9]   Extraordinary optical transmission through sub-wavelength hole arrays [J].
Ebbesen, TW ;
Lezec, HJ ;
Ghaemi, HF ;
Thio, T ;
Wolff, PA .
NATURE, 1998, 391 (6668) :667-669
[10]   Immunopathogenic mechanisms of HIV infection [J].
Fauci, AS ;
Pantaleo, G ;
Stanley, S ;
Weissman, D .
ANNALS OF INTERNAL MEDICINE, 1996, 124 (07) :654-663