Amorphous Titanium Polysulfide Composites with Electronic/Ionic Conduction Networks for All-Solid-State Lithium Batteries

被引:9
作者
Fan, Wentong [1 ,2 ]
Jiang, Miao [1 ,3 ]
Liu, Gaozhan [1 ,3 ]
Weng, Wei [1 ,3 ]
Yang, Jing [1 ]
Yao, Xiayin [1 ,3 ]
机构
[1] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Ningbo 315201, Peoples R China
[2] Univ Sci & Technol China, Nano Sci & Technol Inst, Suzhou 215123, Peoples R China
[3] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
20 percent Super P/a-TiS4@Li7P3S11 composite; electronic/ionic conduction network; interfacial contact; high loading; all-solid-state lithium batteries; POSITIVE-ELECTRODE; SULFUR BATTERIES; REDOX;
D O I
10.1021/acsami.2c03563
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
All-solid-state lithium/sulfide batteries are considered as next-generation high-energy-density batteries with unrivaled safety. However, sulfide cathodes generally suffer from insulating properties and huge volume expansion in all-solid-state lithium batteries. Based on amorphous TiS4 (a-TiS4), a certain proportion of Super P is introduced to suppress the volume expansion and increase the electronic conductivity. Meanwhile, a Li(7)P(3)S(11 )solid electrolyte is in situ coated on the surface of 20% Super P/a-TiS4, and the close interfacial contact between the active material and the solid electrolyte constructs a favorable ionic conduction path. As a result, a Li/75% Li2S-24% P2S5-1% P2O5/Li10GeP2S12/20% Super P/a-TiS4@gLi(7)P(3)S(11) battery shows a high reversible capacity of 507.4 mAh g(-1) after 100 cycles at 0.1 A g(-1). Even the current density increases to 1.0 A g(-1), and it can also provide a reversible capacity of 349.8 mAh g(-1) after 200 cycles. These results demonstrate a promising 20% Super P/a-TiS4@Li7P3S11 cathode material with electronic/ionic conduction networks for all-solid-state lithium batteries.
引用
收藏
页码:17594 / 17600
页数:7
相关论文
共 37 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]   In Situ Coating of Li7P3S11 Electrolyte on CuCo2S4/Graphene Nanocomposite as a High-Performance Cathode for All-Solid-State Lithium Batteries [J].
Cai, Liangting ;
Wan, Hongli ;
Zhang, Qiang ;
Mwizerwa, Jean Pierre ;
Xu, Xiaoxiong ;
Yao, Xiayin .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (30) :33810-33816
[3]   Sulfide solid electrolytes for all-solid-state lithium batteries: Structure, conductivity, stability and application [J].
Chen, Shaojie ;
Xie, Dongjiu ;
Liu, Gaozhan ;
Mwizerwa, Jean Pierre ;
Zhang, Qiang ;
Zhao, Yanran ;
Xu, Xiaoxiong ;
Yao, Xiayin .
ENERGY STORAGE MATERIALS, 2018, 14 :58-74
[4]   Improved cycling stability of the capping agent-free nanocrystalline FeS2 cathode via an upper cut-off voltage control [J].
Cheng, Shuang ;
Wang, Jian ;
Lin, Hongzhen ;
Li, Wanfei ;
Qiu, Yongcai ;
Zheng, Zhaozhao ;
Zhao, Xinluo ;
Zhang, Yuegang .
JOURNAL OF MATERIALS SCIENCE, 2017, 52 (05) :2442-2451
[5]   Building a Better Battery [J].
Chiang, Yet-Ming .
SCIENCE, 2010, 330 (6010) :1485-1486
[6]   Anionic Redox Chemistry in Polysulfide Electrode Materials for Rechargeable Batteries [J].
Grayfer, Ekaterina D. ;
Pazhetnov, Egor M. ;
Kozlova, Mariia N. ;
Artemkina, Sofya B. ;
Fedorov, Vladimir E. .
CHEMSUSCHEM, 2017, 10 (24) :4805-4811
[7]   Amorphous Titanium Sulfide Electrode for All-solid-state Rechargeable Lithium Batteries with High Capacity [J].
Hayashi, Akitoshi ;
Matsuyama, Takuya ;
Sakuda, Atsushi ;
Tatsumisago, Masahiro .
CHEMISTRY LETTERS, 2012, 41 (09) :886-888
[8]   Stable Cycling of a Scalable Graphene-Encapsulated Nanocomposite for Lithium-Sulfur Batteries [J].
He, Guang ;
Hart, Connor J. ;
Liang, Xiao ;
Garsuch, Arnd ;
Nazar, Linda F. .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (14) :10917-10923
[9]   High loading CuS-based cathodes for all-solid-state lithium sulfur batteries with enhanced volumetric capacity [J].
Hosseini, Seyed Milad ;
Varzi, Alberto ;
Ito, Seitaro ;
Aihara, Yuichi ;
Passerini, Stefano .
ENERGY STORAGE MATERIALS, 2020, 27 :61-68
[10]  
Kamaya N, 2011, NAT MATER, V10, P682, DOI [10.1038/nmat3066, 10.1038/NMAT3066]