Stationary and static cylindrically symmetric Einstein spaces of the Lewis form

被引:36
作者
MacCallum, MAH
Santos, NO
机构
[1] Univ London Queen Mary & Westfield Coll, Sch Math Sci, London E1 4NS, England
[2] Univ Cape Town, Dept Math & Appl Math, ZA-7700 Rondebosch, South Africa
[3] CNPq, Observ Nacl, Dept Astrofis, BR-20921400 Rio De Janeiro, RJ, Brazil
关键词
D O I
10.1088/0264-9381/15/6/017
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The derivation of the general solutions for stationary and static cylindrically symmetric Einstein spaces of Lewis form is revisited and the physical and geometrical meanings of the parameters appearing in the resulting solutions are discussed. We find that three of the parameters (and the value of the cosmological constant) are essential, of which one characterizes the local gravitational field and appears in the Cartan scalars, while the remaining two give information about the topological identification made to produce cylindrical symmetry. Other than the cosmological constant, they can be related to the parameters of the vacuum Weyl and Lewis classes, whose interpretation was previously investigated by da Silva et al.
引用
收藏
页码:1627 / 1636
页数:10
相关论文
共 27 条
[1]  
[Anonymous], EXACT SOLUTIONS EINS
[2]   JUNCTION CONDITIONS IN GENERAL-RELATIVITY [J].
BONNOR, WB ;
VICKERS, PA .
GENERAL RELATIVITY AND GRAVITATION, 1981, 13 (01) :29-36
[3]   An exterior for the Godel spacetime [J].
Bonnor, WB ;
Santos, NO ;
MacCallum, MAH .
CLASSICAL AND QUANTUM GRAVITY, 1998, 15 (02) :357-366
[4]   STATIC CYLINDRICALLY SYMMETRIC SOLUTIONS OF EINSTEIN-MAXWELL EQUATIONS [J].
CHITRE, DM ;
GUVEN, R ;
NUTKU, Y .
JOURNAL OF MATHEMATICAL PHYSICS, 1975, 16 (03) :475-477
[5]   ON THE PARAMETERS OF THE LEWIS METRIC FOR THE LEWIS CLASS [J].
DASILVA, MFA ;
HERRERA, L ;
PAIVA, FM ;
SANTOS, NO .
CLASSICAL AND QUANTUM GRAVITY, 1995, 12 (01) :111-118
[6]   THE PARAMETERS OF THE LEWIS METRIC FOR THE WEYL CLASS [J].
DASILVA, MFA ;
HERRERA, L ;
PAIVA, FM ;
SANTOS, NO .
GENERAL RELATIVITY AND GRAVITATION, 1995, 27 (08) :859-872
[7]  
KALE PP, 1970, CURR SCI INDIA, V39, P180
[8]   A REVIEW OF THE GEOMETRICAL EQUIVALENCE OF METRICS IN GENERAL-RELATIVITY [J].
KARLHEDE, A .
GENERAL RELATIVITY AND GRAVITATION, 1980, 12 (09) :693-707
[9]   Solutions of the Einstein equations involving functions of only one variable [J].
Kasner, Edward .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1925, 27 (1-4) :155-162
[10]  
KELLNER A, 1975, THESIS I TEOR PHYSIK