Automated Registration-Based Temporal Bone Computed Tomography Segmentation for Applications in Neurotologic Surgery

被引:24
作者
Ding, Andy S. [1 ,2 ]
Lu, Alexander [1 ,2 ]
Li, Zhaoshuo [3 ]
Galaiya, Deepa [1 ]
Siewerdsen, Jeffrey H. [2 ,3 ]
Taylor, Russell H. [3 ]
Creighton, Francis X. [1 ]
机构
[1] Johns Hopkins Univ, Sch Med, Dept Otolaryngol Head & Neck Surg, 733 N Broadway, Baltimore, MD 21205 USA
[2] Johns Hopkins Univ, Dept Biomed Engn, Baltimore, MD 21205 USA
[3] Johns Hopkins Univ, Dept Comp Sci, Baltimore, MD 21205 USA
关键词
temporal bone; automated segmentation; atlas; data set curation; COCHLEAR IMPLANTATION;
D O I
10.1177/01945998211044982
中图分类号
R76 [耳鼻咽喉科学];
学科分类号
100213 ;
摘要
Objective This study investigates the accuracy of an automated method to rapidly segment relevant temporal bone anatomy from cone beam computed tomography (CT) images. Implementation of this segmentation pipeline has potential to improve surgical safety and decrease operative time by augmenting preoperative planning and interfacing with image-guided robotic surgical systems. Study Design Descriptive study of predicted segmentations. Setting Academic institution. Methods We have developed a computational pipeline based on the symmetric normalization registration method that predicts segmentations of anatomic structures in temporal bone CT scans using a labeled atlas. To evaluate accuracy, we created a data set by manually labeling relevant anatomic structures (eg, ossicles, labyrinth, facial nerve, external auditory canal, dura) for 16 deidentified high-resolution cone beam temporal bone CT images. Automated segmentations from this pipeline were compared against ground-truth manual segmentations by using modified Hausdorff distances and Dice scores. Runtimes were documented to determine the computational requirements of this method. Results Modified Hausdorff distances and Dice scores between predicted and ground-truth labels were as follows: malleus (0.100 +/- 0.054 mm; Dice, 0.827 +/- 0.068), incus (0.100 +/- 0.033 mm; Dice, 0.837 +/- 0.068), stapes (0.157 +/- 0.048 mm; Dice, 0.358 +/- 0.100), labyrinth (0.169 +/- 0.100 mm; Dice, 0.838 +/- 0.060), and facial nerve (0.522 +/- 0.278 mm; Dice, 0.567 +/- 0.130). A quad-core 16GB RAM workstation completed this segmentation pipeline in 10 minutes. Conclusions We demonstrated submillimeter accuracy for automated segmentation of temporal bone anatomy when compared against hand-segmented ground truth using our template registration pipeline. This method is not dependent on the training data volume that plagues many complex deep learning models. Favorable runtime and low computational requirements underscore this method's translational potential.
引用
收藏
页码:133 / 140
页数:8
相关论文
共 27 条
  • [1] First spine surgery utilizing real-time image-guided robotic assistance
    Ahmed, A. Karim
    Zygourakis, Corinna C.
    Kalb, Samuel
    Zhu, Alex M.
    Molina, Camilo A.
    Jiang, Bowen
    Blitz, Ari M.
    Bydon, Ali
    Crawford, Neil R.
    Theodore, Nicholas
    [J]. COMPUTER ASSISTED SURGERY, 2019, 24 (01) : 13 - 17
  • [2] Arriaga, 2015, OTOLOGIC SURG E BOOK
  • [3] A reproducible evaluation of ANTs similarity metric performance in brain image registration
    Avants, Brian B.
    Tustison, Nicholas J.
    Song, Gang
    Cook, Philip A.
    Klein, Arno
    Gee, James C.
    [J]. NEUROIMAGE, 2011, 54 (03) : 2033 - 2044
  • [4] Segmentation of Risk Structures for Otologic Surgery using the Probabilistic Active Shape Model
    Becker, Meike
    Kirschner, Matthias
    Sakas, Georgios
    [J]. MEDICAL IMAGING 2014: IMAGE-GUIDED PROCEDURES, ROBOTIC INTERVENTIONS, AND MODELING, 2014, 9036
  • [5] Robotic cochlear implantation: surgical procedure and first clinical experience
    Caversaccio, Marco
    Gavaghan, Kate
    Wimmer, Wilhelm
    Williamson, Tom
    Anso, Juan
    Mantokoudis, Georgios
    Gerber, Nicolas
    Rathgeb, Christoph
    Feldmann, Arne
    Wagner, Franca
    Scheidegger, Olivier
    Kompis, Martin
    Weisstanner, Christian
    Zoka-Assadi, Masoud
    Roesler, Kai
    Anschuetz, Lukas
    Huth, Markus
    Weber, Stefan
    [J]. ACTA OTO-LARYNGOLOGICA, 2017, 137 (04) : 447 - 454
  • [6] DUBUISSON MP, 1994, INT C PATT RECOG, P566, DOI 10.1109/ICPR.1994.576361
  • [7] Toward an automatic preoperative pipeline for image-guided temporal bone surgery
    Fauser, Johannes
    Stenin, Igor
    Bauer, Markus
    Hsu, Wei-Hung
    Kristin, Julia
    Klenzner, Thomas
    Schipper, Joerg
    Mukhopadhyay, Anirban
    [J]. INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2019, 14 (06) : 967 - 976
  • [8] Facial nerve paralysis following cochlear implant surgery
    Fayad, JN
    Wanna, GB
    Micheletto, JN
    Parisier, SC
    [J]. LARYNGOSCOPE, 2003, 113 (08) : 1344 - 1346
  • [9] The robotic ENT microsurgery system: A novel robotic platform for microvascular surgery
    Feng, Allen L.
    Razavi, Christopher R.
    Lakshminarayanan, Pranav
    Ashai, Zaid
    Olds, Kevin
    Balicki, Marcin
    Gooi, Zhen
    Day, Andrew T.
    Taylor, Russell H.
    Richmon, Jeremy D.
    [J]. LARYNGOSCOPE, 2017, 127 (11) : 2495 - 2500
  • [10] Cerebrospinal Fluid Leaks and Encephaloceles of Temporal Bone Origin: Nuances to Diagnosis and Management
    Jeevan, Dhruve S.
    Ormond, D. Ryan
    Kim, Ana H.
    Meiteles, Lawrence Z.
    Stidham, Katrina R.
    Linstrom, Christopher
    Murali, Raj
    [J]. WORLD NEUROSURGERY, 2015, 83 (04) : 560 - 566