Crystal phases of charged interlayer excitons in van der Waals heterostructures

被引:11
作者
Bondarev, Igor, V [1 ]
Berman, Oleg L. [2 ,3 ,4 ]
Kezerashvili, Roman Ya [2 ,3 ,4 ]
Lozovik, Yurii E. [5 ,6 ]
机构
[1] North Carolina Cent Univ, Dept Math & Phys, Durham, NC 27707 USA
[2] CUNY, Phys Dept, New York City Coll Technol, New York, NY 10021 USA
[3] CUNY, Grad Sch, New York, NY USA
[4] CUNY, Univ Ctr, New York, NY 10021 USA
[5] Russian Acad Sci, Inst Spect, Troitsk, Moscow Region, Russia
[6] Natl Res Univ, Tikhonov Moscow Inst Elect & Math, Higher Sch Econ, Moscow, Russia
关键词
TRANSITION; SEMICONDUCTOR; TRIONS; OPTOELECTRONICS; SUPERFLUIDITY;
D O I
10.1038/s42005-021-00624-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Throughout the years, strongly correlated coherent states of excitons have been the subject of intense theoretical and experimental studies. This topic has recently boomed due to new emerging quantum materials such as van der Waals (vdW) bound atomically thin layers of transition metal dichalcogenides (TMDs). We analyze the collective properties of charged interlayer excitons observed recently in bilayer TMD heterostructures. We predict strongly correlated phases-crystal and Wigner crystal-that can be selectively realized with TMD bilayers of properly chosen electron-hole effective masses by just varying their interlayer separation distance. Our results can be used for nonlinear coherent control, charge transport and spinoptronics application development with quantum vdW heterostuctures. Low-dimensional transition metal dichalcogenides are an ideal platform to investigate strongly correlated phenomena with excitons. Here, the authors theoretically demonstrate that bilayer heterostructures of these materials can be used to realize the strongly correlated many-particle states of charged interlayer excitons that can be controlled by the interlayer separation adjustment and can be tuned by both electro- and magneto-static external fields.
引用
收藏
页数:13
相关论文
共 60 条
[1]  
Abers ES., 2004, Quantum mechanics
[2]   Optical probing in a bilayer dark-bright condensate system [J].
Asriyan, N. A. ;
Kurbakov, I. L. ;
Fedorov, A. K. ;
Lozovik, Yu E. .
PHYSICAL REVIEW B, 2019, 99 (08)
[3]   Quantum phase transition in a two-dimensional system of dipoles [J].
Astrakharchik, G. E. ;
Boronat, J. ;
Kurbakov, I. L. ;
Lozovik, Yu. E. .
PHYSICAL REVIEW LETTERS, 2007, 98 (06)
[4]   Probing the Interlayer Exciton Physics in a MoS2/MoSe2/MoS2 van der Waals Heterostructure [J].
Baranowski, M. ;
Surrente, A. ;
Klopotowski, L. ;
Urban, J. M. ;
Zhang, N. ;
Maude, D. K. ;
Wiwatowski, K. ;
Mackowski, S. ;
Kung, Y. C. ;
Dumcenco, D. ;
Kis, A. ;
Plochocka, P. .
NANO LETTERS, 2017, 17 (10) :6360-6365
[5]   Theory of neutral and charged excitons in monolayer transition metal dichalcogenides [J].
Berkelbach, Timothy C. ;
Hybertsen, Mark S. ;
Reichman, David R. .
PHYSICAL REVIEW B, 2013, 88 (04)
[6]   TRIONS IN COUPLED QUANTUM WELLS AND WIGNER CRYSTALLIZATION [J].
Berman, Oleg L. ;
Kezerashvili, Roman Ya ;
Tsiklauri, Shalva M. .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2014, 28 (09)
[7]   Bose-Einstein condensation and superfluidity of magnetoexcitons in bilayer graphene [J].
Berman, Oleg L. ;
Lozovik, Yurii E. ;
Gumbs, Godfrey .
PHYSICAL REVIEW B, 2008, 77 (15)
[8]   Configuration space method for calculating binding energies of exciton complexes in quasi-1D/2D semiconductors [J].
Bondarev, I. V. .
MODERN PHYSICS LETTERS B, 2016, 30 (24)
[9]   Relative stability of excitonic complexes in quasi-one-dimensional semiconductors [J].
Bondarev, I. V. .
PHYSICAL REVIEW B, 2014, 90 (24)
[10]   Asymptotic exchange coupling of quasi-one-dimensional excitons in carbon nanotubes [J].
Bondarev, I. V. .
PHYSICAL REVIEW B, 2011, 83 (15)