Metal-supported solid oxide fuel cells operated in direct-flame configuration

被引:46
作者
Tucker, Michael C. [1 ]
Ying, Andrew S. [1 ]
机构
[1] Lawrence Berkeley Natl Lab, Energy Technol Area, Energy Convers Grp, 1 Cyclotron Rd, Berkeley, CA 94720 USA
关键词
Metal-supported SOFC; Direct flame sofc; Thermal cycling; POWER-GENERATION; COMBINED HEAT; N-BUTANE; PERFORMANCE; METHANE; PROPANE; BURNER; OXIDATION; SYSTEM; SOFCS;
D O I
10.1016/j.ijhydene.2017.07.224
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Metal-supported solid oxide fuel cells (MS-SOFC) with infiltrated catalysts on both anode and cathode side are operated in direct-flame configuration, with a propane flame impinging on the anode. Placing thermal insulation on the cathode dramatically increases cell temperature and performance. The optimum burner-to-cell gap height is a strong function of flame conditions. Cell performance at the optimum gap is determined within the region of stable non-coking conditions, with equivalence ratio from 1 to 1.9 and flow velocity from 100 to 300 cm s(-1). In this region, performance is most strongly correlated to flow velocity and open circuit voltage. The highest peak power density achieved is 633 mW cm(-2) at 833 degrees C, for equivalence ratio of 1.8 and flow velocity of 300 cm s(-1). The cell starts to produce power within 10 s of being placed in the flame, and displays stable performance over 10 extremely rapid thermal cycles. The cell provides stable performance for > 20 h of semi-continuous operation. (C) 2017 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:24426 / 24434
页数:9
相关论文
共 34 条
[1]   Planar Solid Oxide Fuel Cells Using PSZ, Processed by Sequential Aqueous Tape Casting and Constrained Sintering [J].
Aguilar-Arias, Jaime ;
Hotza, Dachamir ;
Lenormand, Pascal ;
Ansart, Florence .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2013, 96 (10) :3075-3083
[3]   A Study on Energy Conversion Efficiency of Direct Flame Fuel Cell Supported by Clustered Diffusion Microflames [J].
Hirasawa, T. ;
Kato, S. .
14TH INTERNATIONAL CONFERENCE ON MICRO AND NANOTECHNOLOGY FOR POWER GENERATION AND ENERGY CONVERSION APPLICATIONS (POWERMEMS 2014), 2014, 557
[4]   Electrochemical power generation directly from combustion flame of gases, liquids, and solids [J].
Horiuchi, M ;
Suganuma, S ;
Watanabe, M .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (09) :A1402-A1405
[5]   Performance of a solid oxide fuel cell couple operated via in situ catalytic partial oxidation of n-butane [J].
Horiuchi, Michio ;
Katagiri, Fumimasa ;
Yoshiike, Jun ;
Suganuma, Shigeaki ;
Tokutake, Yasue ;
Kronemayer, Helmut ;
Bessler, Wolfgang G. .
JOURNAL OF POWER SOURCES, 2009, 189 (02) :950-957
[6]  
Hossain M. M., 2015, ECS Transactions, V68, P1989, DOI 10.1149/06801.1989ecst
[7]   A direct-flame solid oxide fuel cell (DFFC) operated on methane, propane, and butane [J].
Kronemayer, Helmut ;
Barzan, Daniel ;
Horiuchi, Michio ;
Suganuma, Shigeaki ;
Tokutake, Yasue ;
Schulz, Christof ;
Bessler, Wolfgang G. .
JOURNAL OF POWER SOURCES, 2007, 166 (01) :120-126
[8]   Micro-tubular flame-assisted fuel cell stacks [J].
Milcarek, Ryan J. ;
Garrett, Michael J. ;
Ahn, Jeongmin .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (46) :21489-21496
[9]   Micro-tubular flame-assisted fuel cells running methane [J].
Milcarek, Ryan J. ;
Garrett, Michael J. ;
Wang, Kang ;
Ahn, Jeongmin .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (45) :20670-20679
[10]   Micro-tubular flame-assisted fuel cells for micro-combined heat and power systems [J].
Milcarek, Ryan J. ;
Wang, Kang ;
Falkenstein-Smith, Ryan L. ;
Ahn, Jeongmin .
JOURNAL OF POWER SOURCES, 2016, 306 :148-151