Detecting changes on coastal primary sand dunes using multi-temporal Landsat Imagery

被引:1
|
作者
Goncalves, Gil [1 ,2 ]
Duro, Nuno [2 ]
Sousa, Ercilia [2 ,3 ]
Pinto, Luis [2 ,3 ]
Figueiredo, Isabel [2 ,3 ]
机构
[1] INESC Coimbra, Rua Antero de Quental 199, P-3000033 Coimbra, Portugal
[2] Univ Coimbra, P-3000 Coimbra, Portugal
[3] CMUC, Santa Cruz, CA USA
来源
IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XX | 2014年 / 9244卷
关键词
Coastal change detection; Landsat imagery; unsupervised classification; Open source software; INDEX;
D O I
10.1117/12.2067189
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Due to both natural and anthropogenic causes the coastal primary sand dunes, keeps changing dynamically and continuously their shape, position and extend over time. In this paper we use a case study to show how we monitor the Portuguese coast, between the period 2000 to 2014, using free available multi-temporal Landsat imagery (ETM+ and OLI sensors). First, all the multispectral images are panshaperned to meet the 15 meters spatial resolution of the panchromatic images. Second, using the Modification of Normalized Difference Water Index (MNDWI) and kmeans clustering method we extract the raster shoreline for each image acquisition time. Third, each raster shoreline is smoothed and vectorized using a penalized least square method. Fourth, using an image composed by five synthetic bands and an unsupervised classification method we extract the primary sand dunes. Finally, the visual comparison of the thematic primary sand dunes maps shows that an effective monitoring system can be implemented easily using free available remote sensing imagery data and open source software (QGIS and Orfeo toolbox).
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Spatial and temporal variability during primary succession on tropical coastal sand dunes
    Martínez, ML
    Vázquez, G
    Sánchez Colón, S
    JOURNAL OF VEGETATION SCIENCE, 2001, 12 (03) : 361 - 372
  • [32] Land Use Classification and Change Detection Using Multi-temporal Landsat Imagery in Sulaimaniyah Governorate, Iraq
    Alkaradaghi, Karwan
    Ali, Salahalddin S.
    Al-Ansari, Nadhir
    Laue, Jan
    ADVANCES IN REMOTE SENSING AND GEO INFORMATICS APPLICATIONS, 2019, : 117 - 120
  • [33] PADDOCK SEGMENTATION USING MULTI-TEMPORAL SATELLITE IMAGERY
    North, H. C.
    Pairman, D.
    Belliss, S. E.
    2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014, : 1596 - 1599
  • [34] Crop discrimination using multi-temporal SAR imagery
    Tso, B
    Mather, PM
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 1999, 20 (12) : 2443 - 2460
  • [35] Monitoring peri-urban land use change with multi-temporal Landsat imagery
    Dekolo, S. O.
    Olayinka, D. N.
    URBAN AND REGIONAL DATA MANAGEMENT, 2013, : 145 - 159
  • [36] Impacts of the Tropical Cyclone Idai in Mozambique: A Multi-Temporal Landsat Satellite Imagery Analysis
    Charrua, Alberto Bento
    Padmanaban, Rajchandar
    Cabral, Pedro
    Bandeira, Salomao
    Romeiras, Maria M.
    REMOTE SENSING, 2021, 13 (02) : 1 - 17
  • [37] Habitat metrics based on multi-temporal Landsat imagery for mapping large mammal habitat
    Oeser, Julian
    Heurich, Marco
    Senf, Cornelius
    Pflugmacher, Dirk
    Belotti, Elisa
    Kuemmerle, Tobias
    REMOTE SENSING IN ECOLOGY AND CONSERVATION, 2020, 6 (01) : 52 - 69
  • [38] Mapping grass communities based on multi-temporal Landsat TM imagery and environmental variables
    Zeng, Yuandi
    Liu, Yanfang
    Liu, Yaolin
    de Leeuw, Jan
    GEOINFORMATICS 2007: REMOTELY SENSED DATA AND INFORMATION, PTS 1 AND 2, 2007, 6752
  • [39] A Multi-Temporal Network for Improving Semantic Segmentation of Large-Scale Landsat Imagery
    Yang, Xuan
    Zhang, Bing
    Chen, Zhengchao
    Bai, Yongqing
    Chen, Pan
    REMOTE SENSING, 2022, 14 (19)
  • [40] Mapping deciduous rubber plantations through integration of PALSAR and multi-temporal Landsat imagery
    Dong, Jinwei
    Xiao, Xiangming
    Chen, Bangqian
    Torbick, Nathan
    Jin, Cui
    Zhang, Geli
    Biradar, Chandrashekhar
    REMOTE SENSING OF ENVIRONMENT, 2013, 134 : 392 - 402